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FOREWORD

This document is the final technical report on a study of
structural motion effects on pilot opinion and performance during
tracking in a large flexible vehicle in turbulence. The study was
conducted at the Los Angeles Aircraft Division, Rockwell Inter-
national Corporation, International Airport, Los Angeles, Calif.
90009, under USAF Contract F33615-71-C-1418. The contract work
was sponsored by the Air Force Flight Dynamics Laboratory under
Project 8219, Task No. 821904, and was under the direction of
Mr. Frank L. George (AFFDL/FGC) of the Air Force Flight Dynamics
Laboratory, Wright-Patterson AFB, Ohio. The inclusive dates of
research were 6 December 1971 to 19 August 1973.

The research was performed under the supervision of
L. U. Nardi at the Los Angeles Aircraft Division. Project per-
sonnel included C. A. Crother, Principal Investigator;
B. Gabelman; and D. Langton.

This report was submitted on 19 August 1973.

This technical report has been reviewed and is approved.

C.-1. Wesbrook, Chief
Control Criteria Branch

Flight Control Division
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ABSTRACT

Pilot performance parameters, such as pilot ratings, tracking errors,
and pilot response characteristics, are determined for two longitudinal
tracking tasks, using a large, flexible bomber in a turbulent environment.
The two tasks, terrain following and air refueling, were accomplished on a
limited, six-degrees-of-freedom motion simulator. The effect of structuralU motion on pilot performance and opinion and the correlation with pilot ratings
are of concern for potential application in pilot rating prediction methods.
The study results indicate that the motion effects of turbulence and struc-tural flexibility do not affect pilot performance or pilot opinion in the

two tasks evaluated.
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SECTION I

INTRODUCTION

The analytical prediction of pilot ratings was successfully demonstrated
for the hover task through the work of R. 0. Anderson of the Air Force Flight
Dynamics Laboratory. In his study (reference 1), Anderson utilized the large
mass of experimental hover data to develop a relationship between pilot rating
and measurable pilot task parameters. The potential significance of this
methodology is in its application to pilot/vehicleiL... nTnalyses and evalua-
tion in terms of handling qualities specifications. The extension of this

zoncept to conventional vehicle tasks in the longitudinal axis was undertaken
recently by Anderson (reference 2) and extended to the lateral/directional
axis by E. D. Onstott of Northrop (reference 3). A degree of success was
achieved, but specific criteria have not been developed to date, and part of
the difficulty seems to lie in the poor correlation between pilot ratings and
pilot task parameters when the vehicle is subject to higher levels of turbu-
lence or exhibits poor damping characteristics. Additionally, there is some
concern that structural mode motions adversely affect flying qualities opin-
ions. In order to develop this methodology for application to the large flex-
ible vehicle where structural mode motions are significant, a study was made
to determine the effects on pilot opinion and performance of structural mode
excitation an to incorporate these effects into the methodology of predicting
flying qualities in a turbulent environment. The successful development of
pilot rating predictions based on thi., data base would enhance the potential
for ultimately specifying or evaluating flying qualities criteria through
these methods.

This report details the ipsults of that study in structural mode effects
on pilot opinion and performance during two tracking tasks. Section III
describes briefly the background effort in the prediction of pilot ratings
based on And,.crson's method. Section IV covers the program objectives, a
description of the study vehicle, and the tracking tasks and data analysis
methods employed. The simulation results of the terrain-following and air-
refueling tasks are presented in sections V and VI, respectively. Application
of the simulation results to the paper pilot method is covered in section VII,
while the study conclusions are given in section VIII.
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SECTION II

SUIMARY

Considerable effort has been and is being expended to improve and extend
current flying qualities specifications. One of the areas of technical activ-
ity has been in the use of prediction methods of pilot ratings based on
closed-loop analyses and pilot modeling. Limitations in the method have
appe.red in recent work for conditions involving high turbulence with or with-
out poor aircraft short period damping. This study examines the application
of predictive pilot ratings to a large, flexible bomber in a turbulent environ-
ment where structural motion is significant.

Two longitudinal mission tasks were evaluated using a six-degrees-of-
freedom simulation of the aircraft equations of motion. The piloting tasks
were conducted on a limited six-degrees-of-freedom motion simulator to gener-
ate a data base for deriving a suitable pilot rating algorithm. Pilot comments
and performance in the terrain-following and air-refueling tasks, however,
revealed little correlation between rating and turbulence or structural flex-
ibility effects. Pilot model characteristics were well defined for the
terrain-following task and, in the resulting lead-lag transfer function, the
lag time constant correlated well with turbulence level. In the air-refueling
task, considerable variation occurred in the pilot frequency response charac-
teristics. A frequency dependent, large time delay was found necessary for
good phase matching between pilot model and bode pJot. Although some evidence
exists of a correlation between pilot rating and pilot pitch stick spectral
density fuiction, the general conclusion of the simulation effort is that the
pilots rated the vehicle-task problem and were not influenced by turbulence
or structural mode excitation. This is attributable to the fact that the pri-
mary tracking tasks were in terrain followine and aix refueling and that tur-
bulence and structural effects were additive to these tasks and were not of
sufficient magnitude to dominate the pilot's display tracking capabilities.

The current concept of predicting pilot ratings which isolates flying

qualities from ride qualities appears to be valid based on these results. The
parametric variations conducted in the study proved to be of little influence
in pilot rating determination and, consequently, the data base generated could
not be used to develop flying qualities specifications. Unfortunately, the
simulation and simulator availability did not permit a timely and beneficial
reorientation of the study program.

Preceding page blank



SECTION III

BACKGROUND OF ANALYTICAL METHOD

The VTOL vehicle exhibits basic instability in the hover mode, necessi-

tating the use of stability augmentation systems. Since the degree of arti-
ficial stabilization drastically affects the vehicle's response characteris-

tics, a simple statement of flying qualities requirements in the conventional

terms was not possible. In an effort to circumvent this problem,

R. 0. Anderson developed analytical methods of evaluation and prediction of

pilot ratings based upon closed loop analyses of the hover task. Using experi-
mental hover data available, he showed a correlation between pilot ratings and

pilot task parameters and then developed an analytical method for predicting
such ratings (reference 1). The developed relationship between pilot rating
and pilot task parameters for a hover situation was found to be:

-K (TL s 1) X E (T7 7 ' es + 1)
p L
x x 0

Pilot Model

R= R + R 2 R3  1.0

where

G* - a--a.
R1  --- --- 

0-m = 0.80 = required performance
m

0- = 0- + 100.
x q

0 S R 2.50

and

-= standard deviation of x displacement in feet
x

= standard deviation of pitch rate in rad per second
q

R = 2.5 T R2 - 3.25
2 Lp 2
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R3 = 1.0 T. , R3  1.20

x
T0 = Pilot lead time constant in pitch in seconds

T = Pilot lead time constant in displacement in seconds
x

In an attempt to expand the concept to provide predictions, Anderson said
that, if the pilot naturally works to minimize his rating, the aforementioned
pilot rating function could be used as an algorithm for minimizing pilot
ratings based on the trade-off between workload and performance. He applied
this prediction method to additional hover data and obtained good results. In
an effort to automate the application of the prediction method and thus elimi-
nate the laborious computational chore, J. D. Dillow developed the "paper
pilot" which is a digital computer program for predicting pilot ratings for
the hover task (reference 4).

G. L. Teper of STI undertook to further assess the Anderson prediction
method for the hover task (reference 5). Although the pilot rating criteria
in the hover task used in Teper's work was considerably different from
Anderson's, Teper showed that the Anderson pilot model can be used successfully
if the time delay is assumed to be variable. Additionally, in order to improve
the performance prediction, remnant injection was found necessary.

Extension of the paper pilot to conventional vehicles and a pitch track-
ing task was examined by Anderson in reference 2. In general, the results
proved promising, but the data base was admittedly limited. The form of the
pilot model and the rating algorithm used are as follows:

0. K (TL 1)e

Pilot Model

where

1RI + R2 + 1.0, PERF + R2 + 1.0 50 10
PR

10 , PERF + R2 + 1.0 >10
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-2.5T T <0L'

R1 = 0.1 = 2.5 T 0 :s T - 1.3
0.974-o- LP L

3.25, TL> 1.3

0.1
0974 cr< 0.97390.974- o-'

PERF =

10 11 (0.9,74-o 2 _ 3x0 7 (0.974-6) + 3xlO3 , o-> 0.9739

One interesting aspect of the study results is that, for a high dynamic
pressure (high aircraft longitudinal frequency) flight condition, an open-
loop prediction algorithm based on damping provided better correlation with
the experimental data, while for a low dynamic pressure (low frequency) case
(power approach), the closed-loop paper pilot did better. Additionally, the
open-loop prediction was better even for the low dynamic pressure condition
whenever poor damping existed.

In reference 3, E. D. Onstott and E. P. Salmon of Northrop Corp, attemp-
ted to further extend analytical predicticn methods to the lateral-directional
control of the conventional air vehicle in a turbulent environment. Although
their work showed relatively good prediction of performance measures in roll
and heading control, no real success was achieved in predicting pilot ratings.
However, the data base generated and the performance prediction methods used
provide necessary ingredients for further work in this area. In an extension
of this effort, Onstott et al further applied their performance prediction
methods to two other fighter-type vehicles with the objective of generating
flying qualities specifications (AFFDL Contract F33615-71-C-1067). A pitch
tracking task was also added to the study. Results similar to those presented
in reference 3 were obtained, and flying qualities specifications were pro-

posed in terms of performance measures. One interesting conclusion of the
study was that pilot ratings alone are insufficient for flying qialities in
turbulence evaluations, a position comparable to that expressed in reference 5
which indicated correlation with pilot rating but not with performance is

insufficient for satisfactory specifications.

Drawing on this background in the use of the Anderson method, an inves-
tigation was made to determine the paper pilot's applicability to flying
qualities specification development based on a large, flexible bomber in
turbulence. The results of that study are presented hereafter.

7



SECTION IV

PROGRA OBJECTIVES AND SCOPE

PROGRAM PLAN

The study objectives, as indicated earlier, are to define flying qualities
in turbulence criteria through the application of Anderson's paper pilot con-
cept. The vehicle being evaluated is a large, swingwing bomber. Two flight
conditions representative of mission tasks requiring precise vehicle attitude
control were selected for the application of the analytical methods.

The sequence of steps which were to be followed in the study are as
follows:

I. Incorporate the bomber characteristics and fligiit controls into
the pitch paper pilot.

2. Modify the pilot model and rating algorithm as necessary to
reflect the piloting tasks involved.

3. Identify flying qualities criteria based on these paper pilot
applications to the vehicle in turbulence.

4. Develop flight controls for the vehicle based on the flying
qualities criteria previously identified.

S. Test the method by conducting a simulation program to verify
the flight controls design and the pilot model and performance.

Unfortunately, the uniqueness of the terrain-following task and display
necessitated the running of the simulation first in order to identify the
pilot model to be used in the paper pilot program. In addition, the other
task (air refueling) was sufficiently different as to require still another
pilot model. Thus, the program was essentially reversed, with the simulation
being used to generate data for the analytical program and the flying quali-
ties specifications being based on the paper pilot and simulation results.

T!
DESCRIPTION OF VEHICLE, TASKS, AND PILOT MO)DEL IDENTIFICATION

VEHICLE DESCRIPTION

The vehicle selected for the study is a large, swingwing bomber. Its
primary mission is a low-altitude, high-speed condition, and it uses a struc-
tural model control system to minimize its structural flexibility effects. I

9 Preceding page blank



The command stability augmentation systems (SAS) are conventional, and the
longitudinal control system is shown in block diagram form in figure 1. The
vehicle characteristics are listed in table I for the two flight conditions
of interest, and the vehicle longitudinal equations of motion used in the
analytical evaluations are given in figure 2. These equations, including the
structural mode effects, are described in reference 6.

TASK DESCRIPTIONS

The two vehicle mission tasks selected, which require precise attitude
control, are terrain following (TF) and air refueling (AR). Since turbulence
effects are of significance at these conditions, they are ideally suited for
the study. A brief description of each follows.

The TF task occurs at the low-altitude, high-speed flight condition. The
TF algorithm developed for the vehicle is the ADLAT system. For manual con-
trol, the display of g error to the pilot is augmented by a lagged pitch stick
displacement signal. The g error is generated by multiplying the flight path-
error by 12.7 g per rad. Extensive simulation studies conducted in support
of a bomber development program have shotm that such display lead information
is necessary for satisfactory manual terrain following. For this study, the
TF task was restricted to the pitch axis (vertical plane) with the longitudi-
nal SAS operative.

The simulation tests used the B-1 motion simulator (figure 3), and the
vehicle six-degrees-of-freedom rigid body equations of motion (described in
reference 6) were simulated in the hybrid computer facility. The simulator
pilots flew TF tests using a conventional ADI where the horizontal flight
director needle indicated the g error (scaled for 1 inch per g). Although
six degrees of freedom were simulated, the vehicle was well behaved lateral-
directionally such that the pilot task was restricted to the vertical plane
only (the complete lateral-directional stability augmentation was always
operative and pilot comments indicated no coupling occurred). The turbulence
inputs were also restricted to W effects only. The TF task was flown over a
specific terrain profile, and the runs were from 3 to 7 minutes in duration.
The runs always began at the same point along the ground track (the statis-
tical characteristics of the task are described later). The turbulence was
generated through filtered white noise to approximate the Dryden form of the
power spectra of the turbulence and then recorded on FM tape, thus providing
a constant turbulence time history, desirable because of the relatively short
simulation runs. The turbulence characteristics used are shown in figure 4.

In order to assess the effects of turbulence or pilot-induced structural
mode excitation on the pilot, the vehicle simulation, which was for a rigid

vehicle, had to be slightly modified. In keeping the simulation changes as

10
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TABLE I. VEHICLE CHARACTERISTICS

TERRAIN-FOLLOWING (TF) DATA

Stability Derivatives

Xu = -0.02505 Zw = -0.9498 M = -9.006 XW = -0.05644

X =w= -0.05644 z8 = -165.79 M = -0.6517 M = -0.00158
W g9

x = 0 M = -0.0003 M = -0.00023

Zu = -0.1055 M= -0.00158

Modal Data Mode 1 Mode 2 Mode 3

oi(rad/sec) 13.59 14.12 21,20

Zi (ft/sec ) 8.749 -91.135 -4.7821
12

MNi (rad/sec -0.2028 -0.09777 0.21949

El1  (1/ft sec) 2.529 -0.9948 -0.5867

g (1/rad-sec2) -2227.06 -217.05 614.67

E q (1/rad-sec) -136.87 23.152 50.266

2
E7  (1/sec 2) 7.826 -16.673 66.8071i

2
Ell (1/sec ) 13.877 -335.86 6,9015

En3 i  2) 7.755 34.891 -8.239
3m

A -0.0887 0.0531 -0.1097

7i

'G (1/ft) -0.0036 -0.0079 -0.0030

lp T'P (1/ft) 0.0289 0.0287 0.03585

0.02 0.02 0.02

112
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i TABLE I. VEHICLE CHARACTERISTTCS (CONT)

-Pitch Control System Gains

" K K(h)=-0.4176 sec Ke  K(M0) K(h ) 0.0649 rad/in.

KnZ K(h ) = -0.04716 rad/g K = 0.01099 1/in., KN -0.00627 in./fps

AIR-REFUELING (AR) DATA

Stability Derivatives

X = -0.0049 Z = -0.6121 M8 = -37.188 X 0.02237
U W Wg

X = 0.02237 Z8 = -50.44 M = -0.4259 M -0.003768
w q Wg

X = 0 M = 0.000042 M. = -0.000253
x u w

Z = -0.0998 M = -0.003768
U w

Modal Data Mode 1 Mode 2 Mode 3

&j (rad/sec) 9.0138 12.2792 18.7314

2
Z,. (ft/sec 2) -15.805 1.2688 4.724{i

Mi (rad/sec ) -0.002227 -0.001889 -0,01544

Elw (1/ft-sec) 0 0 0

Wg
2E. (1/rad-sec ) -16.381 -548.69 -0.7316

aa
6

E q (1/rad-sec) 3.750 -25.376 -0.05473

2
E (1/sec2) -29.732 1,2584 1.1284
7,.1i

2 i (1/sec2) -10.279 3.3782 -27.690
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TABLE I. VEHICLE CHARATERISTICS (CONCL)

Modal Data (Continued)

2E (1/sec2) -0.03545 -0.00160 -0.04398
17

A
0.3626 -0.0620 -0.1500

(1/ft) -0.01239 -0.003238 -0.01105
j

(/ft) 0.0198 0.0288 0.0363

0.02 0.02 0.02

Pitch Control System Gains

K K(h) -0.6118 sec K KOf) 0 K(h) = 0.1005 rad/in.

Knz K(h) = -0.06118 rad/g Km 0.01.536 I/in., KN -0.00087 in./fps

Oq

S .322 + Xuu + Xww + Xs8  + Xwgwg

3

W O U+ Z~U + Z~w +Z8+E 7.i

(Mq + U.% ) q + (MU + % ~Z') U - + M w) w

+ (M8 + %z0> + (M17i+ Z71Mw)o~+~3

Iid% i 17i -0 77ri + E1716 +E?7qq + jErr/ 17i + Erwg

ACC 3

nz  ,Uoq- - OA
i--

3

GYRO ,OGq E
j=1

Figure 2. Vehicle Longitudinal Equations
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114

\ I simple as possible, the following was adopted. A single, 2 Hz structural mode
was simulated, capable of being excited by either gust or pitch stick displace-
ments or both. The eftect of the mode on pilot acceleration was fed into the
motion system. The sensitivity of the mode to the gust and pitch stick was
varied in order to assess their effects on the pilot rating of and performance
in the task. Since the objective was to assess pilot motion effects as a
function of magnitude of structural oscillations, it was assumed that one mode,
with excitation sensitivity as a variable, would suffice. A block diagram of
this portion of the simulation setup is shown in figure 4.

Two subjects were used in the TF simulation:

Subject A has 16 years in military and civil aviation as a pilot
and engineering/experimental test pilot on a variety of military
and civil aircraft and helicopters. He is presently assigned as
project pilot for the B-1 program. His past flight experience
includes the F-8, SR-71, F-101, F-100, F-84F, T-38, B-57, and the

Rockwell Sabreliner. He is a graduate of .the USAF Experimental
Test Pilot School at Edwards AFB, Calif.

Subject B is a member of the technical staff at the B-i Division

of North American Aerospace Group and, as an engineer in the
Flight Control Analysis Group, has had over 10 years of experi-

ence in evaluation of flying qualities of fighters, bombers, and
transports simulated in the Flight Simulation Laboratory. He
has a commercial pilot's rating, both single and multiengine,
with over 1,000 flight hours experience.

The subjects were asked to evaluate the TF task as presented to them and not
the motion environment in which they found themselves. Hence, their Cooper-
Harper ratings should vary due to motion effects only if their performance
is impaired.

Those simulation parameters important to the paper pilot program and to
the task performance measurements were recorded on FM tape for later data
analysis. Unfortunately, one sensor (the accelerometer measuring actual pilot
g on the motion simulator) operated intermittently at best, and no confident
record of that parameter was obtained.

1i
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The AR task was conducted at 0.7 mach at a medium altitude. Unlike the
low-altitude, high-speed condition, the wings are swept forward and, hence,
the vehicle is more sensitive to turbulence. To provide a repeatable tracking
task for the evaluating pilots, a simulation run was recorded during which
altitude changes were made approximating the workload involved during air
refueling. The resulting flight path angle (-k) time history was then used
as a tracking command for the simulator data runs (the Ycommand characteris-
tics are given later). Initial attempts at running the simulation using the
ADI horizontal flight director needle as the flight path error indicator
proved unsuccessful because of the conflict in cues displayed by the pitch
attitude ball directly behind the needle. To separate the task display from
the ADI, a cathode-ray tube (CRT) display was used with only the flight path
error and cross bar reference mark being shown (scaled for 1 inch per
10 degrees of flight path error). Since the simulation included six degrees
of freedom, the pilot had to hold speed and wings level, but pilot connents
indicated this was not a factor in their performance. A picture of the CRT
display is given in figure 5 (the runway is a TV picture being provided as a
background for demonstration purposes). Both the tracking task and the tur-
bulence time histories were recorded and repeated for the different runs to
hold these parameters constant. The turbulence inputs and structural mode
representations were similar to those used in the TF task. The one difference
is that the AR data include turbulence effects alone on the rigid aircraft,
in addition to the structural mode excitation effects.

Two subjects were used in the AR simulation:

* Subject B is the same one who participated in the TF simulation.

* Subject C is a former engineering test pilot with 27 years of
flight experience. With a total of 10,000 flight hours (5,000
test hours), he has flown a wide spectrum of large aircraft
including the B-29, B , R-47, B-52, KC-135, and Boeing 707.
He has considerable B-52 AR flight experience. As was done in
the TF simulation, both subjects were asked to rate the vehicle
during the AR task.

In both tasks, the basic problem presented the pilot is one of Y tracking.
The pitch stick to Y transfer functions (SAS on) for the two flight conditions
are given in table II for the rigid body aerodynamics. The inclusion of the
three structural modes would add three poorly damped second orders to the
transfer functions with the associated frequencies close to those shown in
table I. As will be seen later in the discussion on the paper pilot results,
the addition of the structural modes does not significantly affect pilot
motion relative to the task.

18
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PILOT )DEL IDENTIFICATION M6TfI)D

The simulation data generated had to be analyzed to provide task perform-
ance measures and pilot models suitable for the respective tasks. The primary
tool used to accomplish this is a data processing and frequency analysis pro-
gram already developed and in use at the North American Aerospace Group. This
program calculates the autocorrelation and crosscorrelation functions for onepair of time measurement records and estimates spectral density ftmctions from
these calculations. Coherence estimates (similar to the linear correlation
function described in reference 7) are also calculated and can be used to
identify pilot remnant effects. The program also provides the gain and phase
relationships between the two input records based on the appropriate spectral
density, cospectral density, and quadrature spectral density functions.
Finally, the program may be used to obtain a complex curve fit based on an
iterative least squares approximation to the spectral data. The mathematical
expression for this curve represents the system (pilot model) linear transfer
function. The two time histories may also be shifted in time relative to each
other to remove the nonlinear phase effects of a constant time delay. A moredetailed description of this analysis program is given in appendix I.

For use in the aforementioned computer program, the simulation time his-
tories recorded on FM tape were digitized at 50 samples/second with a resolu-
tion of about 0.05 percent. To prevent frequency folding effects, the FM data
were filtered through a 0.0072-second filter because of noise presence (pri-
marily 400 Hz).
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SECTION V

TERRAIN-FOLLOWING DATA EVALUATION

SIMULATION DATA ANALYSIS

The terrain-following (TF) simulation data were analyzed through the data

processing and frequency analysis program to identify those test characteris-

tics important to the paper pilot program. A typical set of data produced by

the analysis program is given here as an example.

A strip chart trace of a typical terrain and vehicle flight path time

history is shown in figure 6. The difference between the command flight path

and the actual flight path, augmented by a signal which is a function of stick

displacement, was converted to an acceleration error and presented to the pilot

on the ADI as described earlier. Typical time histories of the display signal

and the pilot's pitch stick for that TF segment are shown in figure 7. In

addition, the commanded flight path angle time history is also shown in fig-

ure 8. The results of the data analysis for this run are shown in figures 9,

10, 11, and 12. Figure 9 shows the autocorrelation functions for the input-

output signals (the horizontal bar and pitch stick, respective!y). Of par-

ticular interest in these plots are the autocorrelation values at zero lag

number since they are the variances (q2) for the two signals (0.103 inch 2 and

0.017 g2). Figure 10 depicts the spectral density functions for the two sig-

nals, while figure 11 shows the cospectra, quadrature spectra, and coherence
functions. (Refer to appendix I for a description of these functions.)

Finally, figure 12 presents the bode plots for the input-output signals. This

frequency response, computed from the spectral data for this run, represents

the linear pilot model. The two data points on the phase plot, seemingly

separate from the others, actually should be plotted at -189.4 and -187.1

degrees but, because the plotting routine restricts the data points to between

±180 degrees, such points are folded over. The smooth lines on the amplitude

and phase plots represent the results of an automatic routine for a curve fit

to those data points which exhibit a coherence value greater than 0.5. The

match is good except for the dc level of the gain. Th -omputer-provided

transfer function is

3.87 (-0.297S + 1)

1.18S + 1

while a better dc gain fit would be 3.4 rather than 3.87.

Preceding page blank
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Figure 7. Time Histories of Pitch Stick and Horizontal Bar (No. 0418)
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0418 MANUAL TERRAIN FOLLOWING ANALYSIS.
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Figure 10. Spectral Density Functions of Pitch Stick and Horizontal Bar (No. 0418)
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0418 KAI J TERRAIN FOLLOWING ANALYSIS.
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0418 MANUJAL TERRAIN FOLLOWING ANALYSIS.
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The negative lead indicated in the computed pilot model is a comnon
characteristic of all the TF runs analyzed. Although at first glance it seems
to be at odds with most literature on pilot models, this model is not unrea-
sonable when it is realized that this is a linear model being fitted to data
which probably exhibit a time delay; i.e., a linear model including a first-
order Pade' approximation for the time delay would also have a negative lead
term. As will be seen in section VII, the computed paper pilot model (first-
order lag with first-order Pade' approximation for a time delay) compared well
with the measured pilot model of the form previously shown. Since the time
series analysis program could time-shift the output relative to the input,
some early attempts were made to account for pilot time delays before the
spectral analyses occurred. However, since the process is an itorative one
(to find the proper time delay) and, since the program did well in model com-
putation without time shifting, further attempts were ceased.

Although the spectral analysis program does not specifically compute the
remnant effects of the pilot, it does compute the coherence function (R) which
is an indication of the linear relationship between input and output. As
mentioned earlier, this is the same as the linear correlation function described
in reference 7. Since, as shown in appendix I, the coherence function (R) is
given as

2 nnJ t)i~~~ R()=1-Sxx(j(J)

where Sxx(j w) is the spectral density function of the pilot's total output,
then Snn(J w), the spectral density function of the remnant (noise), can be
computed. If the remnant is small, then it can be ignored and the linear
model justified. If the remnant is large, then quite possibly nonlinear or
uncorrelated effects are occurring and the linear model is restricted in
applicability. In general, all of tfle TF runs showed good correlation as
evidenced by the coherence function plots shown in figure 11 and in appen-
dix II. Figure 13 shows the PSD of the computed remnant for the pilot transfer
function previously shown. The ratio of the remnant standard deviation to that
of the pilot's total output (o snn/0s~x) is 0.48. It should be further noted
that the time series analysis program curve fit only uses frequency data points
which exhibit a specified level of coherence. For the TF runs, a value of0.5 was used.

The spectral density and autocorrelation functions for the corresponaing
Tc for this particular run are shown in figure 14.
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The flight path comand time history naturally depends upon how well the
pilot follows the terrain. However, it can be expected that the actual varia-
tion in the statistical description of this signal will be small if the pilot's
capabilities are not widely disparate and if the pilot's performance is not
significant!y different between runs. Figure 15 shows the change in spectral
density function for one pilot as the stick effect on structural mode excita-
tion progresses from nill to very heavy (curves 1 to 3). The corresponding
autocorrelation functions are also shown in figure 15 with the resulting
standard deviations (o) of 0.065 rad, 0.077 rad, and 0.078 rad, respectively.
Figure 16 shows the Y, time histories for these runs. These variations are
typical of the extremes encountered and, for application in the paper pilot
program, the o of the Yc used was obtained by averaging over a number of runs
with the average being 0.069 rad.

An interesting application of the pilot mod. 1 generated in this program
provided tentative validation of the model characteristics. Computer runs
were made with a TF system using the pilot model to close the g control loop.
The run was made for an encounter with an isolated peak. Comparative computer
runs were made using an automatic TF system. Figure 59 in appendix II shows
the two runs and illustrates how well the pilot model performed.

SIMUVLATION RESULTS

The IT simulation data were examined to determine the effects of turbu-
lence and structural mode excitation on pilot ratings and performance param-
eters. Additionally, data evaluation was made to identify any correlation
existing between pilot ratings and performance parameters. These results are
presented herein.

Pilot rating influence due to the variables of gust and stick excitation
of pilot motion differe between pilots A and B, as shown in figure 17. Pilot
A maintained constant rating of 2 across the board of parameter variations.
Even for the case of maximum effects of gust and stick simultaneously, his
comment was "motion doesn't seem to affect any stick motion or control."
Pilot A's rating of 2 for the task continued even when a subjective rating of
E for vibration intensity was given (on a scale of A to F for increasing inten-
sity.) Pilot B showed a rating degradation for high stick effects on pilot
motion, but not for gust excitations even though his subjective rating for
vibration intensity was higher (D versus B) for the worst gust case compared
to the worst stick case. The effect of large stick excitation on performance
parameters is not pronounced as will be seen later. The explanation seems to
tie in with the fact that the stick input into the structural mode was not
rate limited in the simulation; hence, stick-effect gains large enough to
provide noticeable pilot motion for small, tracking-type stick displacements
could cause a relatively severe jolt if the stick were pulsed or moved
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stepwise. This presumed mental inhibition seems to have caused the pilot
rating to deteriorate even though his performance did not. (See figure 19.)

Pilot rating is also plotted versus four pilot performance parameters as
shown in figures 18 and 19. In the latter plot, the ratings as a function
of the standard deviation ( a-) of horizontal bar (needle) and pitch stick are
depicted. No obvious relationships exist (note pilot B shows ratings of 2,
3.5, and 4 for essentially the same value of error signal,"HB). In figure 18,

the ratings are plotted versus measured pilot model lag and lead time constants.
(It shoild be noted that pilot model computations were not made for all pilot
B test cases, but only those to show the range of gust and stick effects.) It
would be expected that the pilot rating would increase with decreasing TLAG
and increasing -rLEAD, but only in the case for pilot B is this seen, even to
a slight extent, with decreasing rLAG; i.e., rating increases above 2 only
when TLAG goes below 0.90 second.

Performance parameters descriptive of the pilot model and task activity
are shown in figures 20 through 24. The first figure shows how the standard
deviation of pitch stick activity varies with gust and stick effects on struc-
tural motion. Pilot A shows a slight decrease in stick G ps with an increase
in stick effect on motion. Since, ih this simulation, the increase in stick
effect does not result in an increase in vehicle moment control but only in
pilot motion through the structural mode excitatinn, it might be expected that
the stick activity should remain relatively constant since the tracking task
doesn't really change. (The pilot motion was never large enough to cause con-
sistent involuntary stick motion.) Pilot B shows a more constant activity
with only a slight increase for both the stick and gust effects. However,
pilot A does show a definite trend in crps with gust effects. This tendency
to decrease stick activity as high-frequency motion effects increase is not
unexpected. .The pilot will tend to decrease the frequency of his inputs and
follow the lower frequency tracking errors. This is seen in figure 25 which
shows the spectral density functions for the three conditions being discussed.
The curves labeled 1 to 3 (for increasing gust excitation) shows the frequency
corresponding to peak power drops off from 0.5 to 0.3 and finally below
0.1 rad per second.

In figure 21, the standard deviation in the horizontal bar (needle) move-
ments is presented versus the pilot acceleration resulting from gust and stick
excitation of the structural modes. Between the two pilots, the most obvious
difference is in level of the signal, particularly at the zero level for
structural motion. Since stick displacement feeds into the display, it could
be expected higher stick activity would result in higher display activity.
However, figure 20 does not support that contention since both pilots show
about the same -iPS. Examination of the stick amd horizontal bar PSDs for both
pilots reveals a significant difference, however. Pilot A shows the same peak
frequency in both stick and horizontal bar (figure 49) PSD's, while pilot B
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(figure 54) indicates the influence of stick on horizontal bar is not nearly
as significant. Hence, pilot A's large G-HB can be attributed to the large
power content in pitch stick at about 0.5 rad per second frequency. This
effect of frequency is further borne out by noting that the convergence in
THB values for large stick effects is duplicated by convergence in PSD simi-
larities as seen in figures 51 and 56.

The variation in pilot model narameters are shown in the next three fig-
ures. The lead time constant remains relatively steady for both pilots as
seen in figure 22. Both pilots converge on a value of 0.30 second with
increasing pilot motion resulting from increased structural effects. Pilot
lag time constant shows a definite trend with increased turbulent motion.
(See figure 23.) Both pilots decrease their lag time constants from about
2.5 to 3.0 seconds to about 1 to 1.5 seconds. Finally, the pilot model low-
frequency gain (dc) is shown in figure 24. The gains, normalized to the no
structural motion case, decrease with increasing pilot motion due to increasing
structural effects. Percentagewise, pilot B shows a larger decrease than does
pilot A. This is due primarily to the fact that pilot B's initial gain is
higher than pilot A's (refer to table IV in appendix II) because of pilot B's
greater activity in the low-frequency range as mentioned earlier.

The TF simulation revealed the ability of the pilots to maintain fairly
constant performance over the range of structural motion effects studied with-
out any significant trend in pilot workload. This is reflected in the pilots'
unchanging rating of the TF task even when subjected to a high level of tur-
bulent type of motion. This is undoubtedly due to a large extent to the fact
that the tracking task was a low-frequency one and that the high-frequency
disturbance did not appear in the display, but only affected his "ride."
Hence, in this respect, the TF task was unlike other tracking tasks described
in earlier referenced works where the turbulence provided the tracking problem.

The form of the measured pilot model was consistent throughout the runs,
and the data exhibited good coherence throughout the frequency range sampled.
The negative lead character tic identified in the pilot model is not unexpected
if the assumption is zje that it represents part of the first-order linear
approximation of the time delay existing in the pilot's response.
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SClIGN VI

Al R REFUELING DATA LVAI.LIIO..

SIMULArI(O.. DVTA A.N.ALYSIS

The air refueling (-AR) simulation data were analyzed in a manner
similar to that done for the terrain-following (TF) data. Aside from the
change in flight condition, the significant differences in task were:

1. The display did not have lagged pitch stick displacement sunning
w 'ith 7 LRROR

2. The Y tracking task was generated in an open-loop fashion.

A typical set of AR traces and data are presented herein with a discussion
of the AR simulation data in later paragraphs.

Figure 26 shows the tracki,g task, Y , as a function of time
(-- 0.88 degree RPIS and the miean = -0.9 degree) and its spectral

density function. For a typical AR run, time histories of the display
signal (Y O) and pitch stick are shown in figure 27. Figures 28 and
29 show le autocorrelation and cresscorrelation functions, respectively.
TDhe spectral density functions are presented in figure 30, while figure 31
shows the cospectra, quadrature spectra, and coherence functions. And
finally, figure 32 presents the bode plots for these input-output signals.
It is at this point that the data processing and frequency analysis results
differ from those obtained in the TF task. Automatic curve fitting to
these data was not achieved. lhe bode plot indicates the transfer func-
tions consists primarily of lead terms. lhe analysis program f." led to find
acceptable curve fits for these lead-only situations. Hence, linited
curve fitting was done by hand and, as will be seen later, even linear
lead-only transfer functions (as suggested in this bode plot) were often
inaU.:quate. Complexities arose primarily because of the nonlinear phase
behavior (evident in the referenced figure) of many of the plots.

SIMULAT ION RLSULTS

A-s was evident in the TF task, the pilot ratings obtained were not a
function of turbulence or structural mode excitation but, for the AR task,
reflected whether the stability augmentation system (SAS) was off or on.
Figure 33 shows that pilot B rated the AR task with SAS on as a 3 regard-
le s of turbulence while, for SAS off, his rating was a 5 for no
turbulence and a 9 for 3 fps RNSS of turbulence. This latter rating must
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be considered something of an anomaly because, in subsequent runs with
SAS off and with more extreme turbulence, the task was rated a S. Pilot
comment and the data indicate a PIO condition existed (see figure 78 in
appendix 1l1) of sufficient severity to cause him to give a 9 rating.
Such a PIO condition, however, did not reoccur. The time histories in
the figure show the oscillations at about 0.3 Hz, and the pitch stick
spectral density function in the same figure shows the significant power
contained in the 0.3 Hz or 2 raa-per-second frequency region (compare this
plot with that shown in figure 79 for SAS off, the same turbulence level
and with structural mode effects but with no power peak unrelated to the
task). Although the rating seems extreme for a PIO condition, the pilot
felt he could not accomplish the AR task safely. Based on his performance
and ratings for similar conditions, it is felt this case is an isolated
one where, probably, pilot motivation was temporarily insufficient.

Pilot C was likewise consistent in his ratings, a 2 for SAS on and a
4 for SAS off regardless of the level of turbulence or mode of excitation.

These data indicate that the primary parameters of variation used in
the study are not those which influence pilot ratings of the task.
Turbulence level, structural modeexcitation, pilot acceleration, aiid
other parameters which may correlate with these are insufficient to
develop a pilot rating prediction algorithm. In the AR task, only SAS
affected pilot ratings. The gain of the conmand SAS had to be reduced by
a factor of 4 at the beginning of the simulation to provide an acceptable
pilot rating, and this gain effect is shown in figure 34. Increasing the
gain caused an increase in stick activity, Y. and pilot acceleration.ERRDR , .
all for zero turbulence. Unfcrtunately, this correlation is not easily
verified in the paper pilot scheme since that algorithm was developed on
the assumption that the optimum pilot input sensitivity had been selected
and, as a consequence, pilot gain is not a variable in the rating
algorithm or cost function. Examination of the pitch stick spectral
density plots for the three SAS pilot input gains indicates that, as the
frequency content of the activity decreased, the ratings improved
(figures 3', 76, and 75 correspond to the normalized electrical gains of
i, 2, and 4 shown in figure 34). The pilot obviously prefers to work at a
lower frequency. This certainly is in an indication of why the TF and AR
tasks are well rated by the pilots, in spite of their motion environment,
as long as the frequency content of the task remains low. The effect of
SAS on the frequency content of pilot activity is illustrated in figure 35
for runs No. OlAll and 04A! which show SAS on and off, respectively.
Even though the pitch stick r is higher for the SAS-on case (0.192 versus
0.173 in RMS), there is a well-pronounced frequency peak at 2 rad per
second for the SAS-off situation.

Another SAS control system parameter was evaluated, the stick pre-
filter which, however, proved to have little effect on pilot ratings in the
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lag range evaluated. Performance parameters resulting from the lag
variations of from 0.10 to 1.0 second are shown in figure 36. Pilot B shows

* relatively little difference in stick activity with turbulence or stick lag
variation, while the tracking error 0rPIB does show the effects of increased
stick lag. This, however, did not significantly influence pilot rating.

Additional effects of SAS on task performance parameters are given in
figure 37 which presents the standard deviations in pitch stick and
horizo.tal bar (Y ERrR) as a function of turbulence level, turbulence
excitation of structural mode, and SAS status. No obvious correlations
exist except for the higher o-'s for the high turbulence and SAS-off cases.
Figure 38 shows similar SAS effects for the rigid body vehicle for various
turbulence levels. Pilot B does show more tracking error for the SAS-off
case, while .pilot C shows a reduced tracking error for SAS off. Stick
activity data shown are also not instructive except for the one SAS-off
case for 3 fps RS of gust velocity which was described earlier.

Pilot acceljration, in the AR study, was generated through the pilot
tracking efforc, the rigid body motion due to turbulence and the acceleration
due to structural moda excitation by the turbulence and stick. Figure 39
shows how pilot acceleration is affected by these variations. Structural
mode excitations by turbulence are the dominant contributors for both
pilots. The pilots really have no control over these effects. The rigid
body accelerations are considerably different for the two pilots for the
low levels of turbulence, but are identical for the high levels. Although
the stick activity for the two pilots is almost the same (0.235 and
0.225 a- ) for 3 fps M,4S of gust, the difference in rigid body accelerations
can be 9xplained by examining the stick spectral density functions. (See
figures 84 and 60.) In the former plot (pilot C) the power is concentrated
at about 2 rad per second, while, for the latter plot (pilot B), the
dominance is in the lower frequencies. The higher frequency inputs by
pilot C result in attenuated rigid body acceleration effects, while
pilot B's lower frequencies result in more acceleration effects. This can
be seen in figure 40 which presents the pilot acceleration spectral density
functions for die tw'o cases. Pilot B, fihe lower plot, showis che higher
acceleration levels existing at the lower frequencies, thus giving a

larger standard de-i" n as shown in figure 39. For the higher turbulence
level (w = iZ fps R\5), the standard deviations in pilot acceleration
is aboutgthe same as seen in figure 40, and this is evident in the similarity
of the spectral density plots for the two pilots, shown in figure 41.

Pilot acceleration data show little correlation with pitch stick
activity and horizontal bar (Y"RR R)' as shown in figure 42. The arrows
shown on the curves indicate the irection of increasing turbulence level.
No obvious trend exists for the set of data, although some of the indicated
subsets show a degree of correlation with turbulence.

61



0.4 _ _I

I PILOT B!
SAS ON
RIGID BODY STICK PREFILTER?'

0.3 -*.-0.1O SEC

STANDARD 0.
DEVIATION
PITCH STICK
'INCH wazv a

0.1

01 10

0 2 14 6 8 10 21

t GUST VELOCITY (wg) -FPS RMS

0.7

'B0.6 
--

S TAN DARD
DEVIATION
HORIZONTAL
BAR- DEG

0024 6 8 10 12 114

GUST VELOCITY (wg) -FPS PMS

Figure 3ii. Air-Retueling ",ask Performance Parameter Variation Due to Stick
Prefilter Time Constant

62



O PILOI B
C] P! LOT C
-SAS ON

SAS OFF

0.3

STANDARD-

DEVIATION

STICK

INCH 0 O

0. _______ WITH GUST EXCITATION

OF STRUCTURAL MODE

OtI I I
0246810 12 14

GUST VELOCITY (Wg) ~-FPS RMS

0.911

STANDARD_________ __________________

HORIZONTAL
BAR -DEG 0.5- w
T OF

WITH GUST EXCITATION

OF STR UCTURAL MODE

0 2 4 6 8 10 12 14
GUST VELOCITY (Wg) -FPS RMS

Figure 37. SAS Effects on Air-Refueling Perfo-nnance Parame-nters with Gust
Excitation of Structural Mode

63



0.4 T
RIGIDY BODY

ap

STANDARD 0.2 ___

DEVIATION
PITCH STICK
~INCH o PILOT B

o1 PILOT C
-0S. O

SAS ONF

00 2 4 6 8 10 12 14

GUST VELOCITY (Wg) - FPS RHS

0.9

'HB .

STANDARD 0.6- -

HOR IZONTAL

0.3 44f

0 2 4 6 8 10 12 14

GUST VELOCITY (Wg) -FPS RMS

Figure 38. SAS Effects on Rigid Body Air-Refueling Performance Parameters

64

41



0 PILOT B

0 3C PILOT C _

0.13SAS ON

0.12 inn GUST ON STRUCTURAL MODE - i
STICK ON STRUCTURAL MODE

0.11 A# A

0.101

n ZPILOT 0.9 I

0 0 2p 4 8101

0.06



0A50 R rJL ANALYSIS.

SPECIR. DENSITY F1NCTIONS

.0200 ,UI-COAT METHOD

<1 *0l5O__1. _ Pilot.,
' .0100.. .- -- .

.0050

0,-I

- --- -- 
] I

REOUNcY (RAO/SEC)

02A12 RErUEL ANALYSIS.

SPECTRAL OENSITY FUNCTIONS

.040 AUTO-CORRELAT I ON rTHOD

.030 I _ _ Pilot -

-I

_AJ

-,j0- .010 _ _ _-

J0 ___+

X1.IO, I.XIO.
+0- -

FREQUENCY (RAD/SEC)

Figure 40. Variation of Pilot Acceleration Spectral Density Functions

66



02A52 REFUEL ANALYSIS.

SPECIR DENSITY FtLMCTIONS

.030 AUTO-CORRELATION ".ETHOD 't
_~7 ____ I Pilot ~3 I_w _ ____

Ci

04 -. .020I I _ _ I
_j TIV

0.-

, 1S- _ I I *

•. 0 _ I

I I " 1
lXO

0  
.l

+ f
lXIO0

2  
-"

FREOUENCY (RAD/SEC)

02A14 REFUEL ANALYSIS.

SPECIR' OENSITY rUN.CTION,

.040 AUTO-CORMELAT ION METHOD

oL .... 
... ..- - 5-1... 1111--

_ __ -i I --- _ _--r l.020 __ __- __I

.XIO IX0 0  L L ' l-._l_
FREQUENCY (RAD/SEC)

Figure 41. Variation of Pilt Acceleration Spectral Density

Functions for High Gust Levels

67



0 PILOT B
- PILOT C

SAS ON
- RIGID BODY

,-, STRUCTURAL MODE EXCITATION
0.3 DUE TO GUST

STRUCTURAL MODE EXCITATION

DUE TO STICK

STANDARD ,04, -

DEVIATION 0.2 -

PITCH STICK
INCH

rr0.1

0 -l I - - -

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
nZPILOT 

g RMS

0.7 --

'HB

STANDARD

DEVIATION 0.6- - - -

HORIZONTAL b /

BAR - DEG /
OF V

0.5 - -

0.4

0 0.02 0.04 0.06 0.08 0. 10 0.12 0.14 0.16
nZPILOT " 9 RMS

Figure 42. Air-Refueling Performance Parameters Versus Pilot Acceleration

68



Pitch stick activity trends do show up as a function of structural mode
excitation. Figure 43 shows o- decreases with gust level when the stick
excites the structural mode. We effect of gust on the structural mode
differs between the pilots with pilot B displaying a reduction with increased
gust levrel while pilot C does the opposite. Both pilots show a slight
increase in o- with rigid body gusts. In the lower plot, the tracking
error (OjYD) efects are ;nxre pronounced between pilots than between gust
levels. "Pilot B does indicate an increase in o-B with gust increase and
with gust and stick excitation of the structura mode. Oil the other hand,
pilot C decreases his tracking error standard deviation slightly with
increasing gust level. Thie large difference in tracking error PMS -B)

between the pilots can be seen in the horizontal bar time histories in
figures 27 and 83. In figure 83, it is evident pilot C allows larger
tracking errors to exist for longer times than does pilot B (figure 27).

Analysis of the pilot bode plots proved difficult because of the
variation in the form of the data and the apparent need for complex models.
Compared to the TF data, the coherence estimates of the AR data were poor.
As described in appendix I, the coherence estimate is an indication of the
adequacy of a linear, time-invariant transfer function in fitting the
input-output time histories.

Figure 11 gives the coherence function for a TF run (No. 0418) which
can be compared with that shown in figure 31 for an AR run (Nc OAll).
The spectral density function of the remnant for AR run (No. OlAil) is
given in figure 44 which can be compared to figure 13. The obvious
difference is tie consistently poor coherence estimate for frequencies
above 2.5 rad per second for the AR case. iis is typical of most of the
AR data, and examination of the bode plots indicates a significant leveling
off or dropping in amplitude ratio for frequencies above 2.5 to 3.0 rad per
second. For those AR cases where a double lead pilot model was assumed
and shown on the data plots, the amplitude ratio linear model must be
restricted to frequencies below 2.5 to 3.0 rad per second, as is apparent
from the plots.

Even in the lower frequency ranges, a considerable variation in
amplitude ratio form is indicated by the bode plots. They range from
simple lead (figure 66) to double lead (figure 75) to lead-lag (figure 821
to a notch filter (figure 94) and, finally, to a simple lag (figure 68).
In each case, the phase plot does not match the amplitude ratio form. The
respective coherence functions vary as can be seen in appendix II1. 'The
simple lead coherence function is high to 2 rad per second, the double
lead coherence is high to 3.5 rad per second, tie lead-lag is relatively
poor throughout, the notch filter is poor at the notd frequency and above
2 rad per second, while the simple lag is high to 1.3 rad per second. In
general, however, if the data points exhibiting low coherence values are
ignored, the common tendency is to a lead only transfer function.
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The phase plots, in general, are poor matches to the amplitude ratio
plots. Even where a rather positive indication of lead behavior is
evident, as in figure 75, the phase noticeably exhibits less lead than
expected. A simple time delay, unfortunately, will not solve the phase
mismatch. A father complex time delay with the delay time constant, 7 _, being
a function of frequency i_! required. Run No. OlAll, mentioned earlier, is
shown again in figure 45 with a postulated pilot model curve fit shown.
The frequency response data can be matched by assuming the pilot adopted a
lead ten and a variable time delay. In the low-frequency range, he would
exhibit a time delay of 1.0 second which is removed as the frequency
increases until, at 3 rad per second, the time delay is zero. Figure 45
shows the resulting curve fit. It can be expected that the majority of the
AR cases can be handled by using a variable time delay to account for the
phase mismatch. Without the benefit of an automatic curve fit program
(as was achievable for the TF data), such pilot model construction would
require lengthy and tedious effort. However, since the AR task did reflect
a variation in pilot rating with SAS status, another pilot model construc-
tion was made for run No. 02A2 which was a SAS-off condition with a pilot
rating of 9. Figure 46 shows the bode plot obtained from the pilot traces
and a pilot model curve fit based on a double lead and a variable time
delay. For the curve fit, a larger time delay (1.5 seconds) was necessary
tJhan for the SAS-on condition in figure 45. In additica, a double lead of
1.0 second was also necessary for a better amplitude match. The physical
significance or even the possibility of such frequency-dependent time
delay relative to pilot behavior is not considered. T7he pilot remnant PSD
for this run is shown in figure 47. No further attempts were made to
develop pilot models for the various AR data involving turbulence and
structural mode variations.

Examination of the spectral density functions for the AR cases reveals
a characteristic which might be of use in correlating pilot ratings with
pilot activity. In many of the SAS-off cases, the pitch stick spectral
density function exhibits a high frequency peak which is as large or larger
than any existing in the frequency range associated with the tracking task.
Figure 36 illustrates the case for run No. OlAll which is SAS-on with a
rating of 3 and run No. 04A1 which is SAS-off with a rating of 5. Assuming
this is a distinguishing characteristic between good and bad pilot ratings,
the rest of the AR data were examined for such traits. For pilot B, of the
seven cases with a 5 rating, four checked out in the manner previously
described, while for 17 cases with a 3 rating, all checked out. For
pilot C, all eight of the cases rated 4 checked out, while six of the 10
cases rated 2 checked out. Since, in general, the tracking error spectral
density function does not show a similar behavior, this additional pilot
activity is similar in function to pilot remnant effects. As indicated
earlier, however, the pitch stick standard deviation does not correlate
with pilot rating. Further work in this area of spectral density function
analysis may be fruitful.
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ShCTION VII

DISCUSSION OF PILOT RATING PREDICION

PAPER PILOT MDDIFICATINS

Since the terrain-following (TF) simulation did not corroborate past
investigations relative to adverse effects of turbulence on pilot ratings,
the rating algorithmi used in reference 2 was not modified. However, the
pilot model was changed to reflect the characteristic lead-lag forn vund
in the simulation data. Further modifications were made to incorporate
the selected vehicle's aerodynamic characteristics, its three primary
longitudinal structural modes, and its control system and display signal
format. The shaping of the tracking command signal %%as also changed from
a first-ordei lag to a second order so as to more closely approximate the
characteristics of the simulated Y . 1his modified paper pilot computer
program is available at the Air Force Flight Drnamics Laboratory, Wright-
Patterson AFB, Ohio.

1ERRAIN- FOLLOWING RESULTS

For the TF runs, the pilot lag term was set as a constant with the
pilot gain and lead time constant being the variable parameters. For thle
rigid aircraft and zero turbulence level, the paper pilot computed a pilot
rating of 1.15 with a pilot gain of 4.0 inch per g and a zero lead time
constant. A pilot time delay of 0.42 second was included ir thle paper
pilot. These results can be compared directly with TF run No. 1015 which,
as shown in table IV, has the same task conditions. Tihe computed pilot
model from this simulation run ..s also shown in table IV and plotted in
figure 49. For convenience, the pilot model plot is reshown as figure 48
but with the addition of the paper pilot computed pilot model. The match
including the steady-state gain is surprisingly good.

Additional paper pilot runs with different turbulence levels and with
structural modes included showed very little variation .n pilot rating
and pilot model parameters. Table III lists the values obta:',ed for the
various combinations evaluated. Although the analytically derived pilot
ratings are low compared to those in the TF simulation, the sane insensi-
tivicy to turbulence and structural mode effects is evident.

AIR REFUELING RESULTS

Thie inconsitency in the pilot model data obtained in the air-refueling
(AR) simulation made it difficult to generate paper pilot data for
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Figure 48. Comparison of TF Simulation Pilot Model and Paper
Pilot Generated Pilot Model
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I

comparison. Since the TF and AR results shov.od little effect due to
turbulence and structural modes, only three runs =rz z:hc,n in table III for
the AR results. These represent conditions similar to those evaluated in
the AR simulacion which resulted in pilot rating changes. The first two
AR conditions represented the change in SAS command augmentation gains, as
depicted in figure 34. The primary effect is in pilot gain and, not
unexpectedly, little difference in paper pilot results is shown. The third
condition is for the SAS-off case and again little change is noted, unlike
the simulation. The ratings are also consistently lower than those obtained
in the simulation, again as was observed for the terrain tollowing. However,
the AR paper pilot did reflect a lead required task compared to TF by
reducing the pilot lag to zero. This directi... of pilot ,3del change agrees
with the simulation data.
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SEcricw VI II

CONCLUSIONS

Thie examination in this study of a large, flexibje bomber in a turbulent
environment was engendered because of past difficulties, reported by other
investigators, of correlating increasing pilot rating with pilot character-
istics and performance parameters when turbulence levels were increasing.
Piloted simulation, conducted in this study, of two longitudinal tracking
tasks uder high levels of turbulence revealed little consistent correlation
between pilot rating and turbulence levels. Pilot acceleration, aggravated
by both turbulence and structural mode excitation, did not influence pilot
rating. The pilots participating in the simulation seemed able to divorce
their task rating from their motion environment. Only when the vehicle
short period dharacteristics were varied (e.g., SAS off) dlid pilot rating
change, &n indication that the higher frequency effects of turbulence and
structural mode excitation did not influence their primary tracking task.

Pilot performance and response parameters used in past Pilot rating
prediction methods did not correlate with pilot ratings. Pilot acceleration,
likewise, did not provide any consistent clue to the piiot ratings. Exami-
nation of the spectral density functions for the pitch stick (pilot output)
and horizontal bar (pilot input) revealed a degree of correlation between
pilot rating and the pitch stick power distribution in terms of frequency.
A dominant peak in the spectral density function unrelated to the tracking
task frequency content seemed to indicate a poorer control of the vehicle
by the pilot and, as a result, a poorer pilot rating.

'lhe pilot models constructed from the terrain-following (TF) simulation
are considerably different from those required for the air-refueling (AR)
simulation. A lead-lag model withi a negative lead consistently fitted the
TF task data which showed generally good coherence characteristics. '! e
AR data varied in form considerably from simple leads to complex lead lags,
to notch filters, and to simple lags. In general, however, if only data
showing high coherence are used, the characteristic linear pilot model is
of a lead-only transfer function. A frequency dependent time delay is
required to provide reasonably good phase matching.

The results of the study indicate that current flying qualities
pe,:ifications Should continue to maintain a separation from ride qualities

cons-iderations . Longitudinal tracking tasks of the nature evaluated were
rated on the basis of the vehicle short-period dynamics and inot on the
high-frequency pilot motion caused by turbulence and/or structural modes.
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APPENDIX I

DATA PROCESSING AND FREQUENCY ANALYSIS PROGRNM

PRINCIPAL THEORIES

Statistical spectral analysis is a widely recognized tool for analyzing
time-varying data from a variety of experimental situations. In this

program, the emphasis is placed on cross-spectral analysis of paired time
records representing an input time sequence and an output time sequence
from some experimental time-invariant system. Cross-spectral analysis
provides a measurement of the frequency response function of that system.
This is possible even when the output is contaminated by noise disturbances

arising, for example, from measurement errors or instrumentation variation.
A transfer function can often be detc-rnuned from the frequency response func-
tion by an iterative least squares technique. The principal theories

(computing formulas) for the program are discussed herein.

NUMERICAL FOURIER TRANSFORMS

This program uses a rectangular iitv'gration with end-point corrections
to obtain the numerical (also called fini ce discrete) Fourier transform.
Because Fourier transforms are, in gencral, complex quantities (i.e., of

the form Z(j)) = U(jo) + jV(jo)) , the i ,,,erical or finite discrete Fourier
transform may be represented in two parts as

N-n

U(j r) = T1 x(kT) . cos kwo T
k=n r

and

N-n

V(jcor = T1 x(kT) . sin kcoT
r r

where

T = sampling period in seconds

N = number of data points in the data set

Preceding page blank
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n = nurber of end points to be weighted with end-point corrections

x(kT) = the time sequence (or correlation sequence) to be transformed

AbTOCORRELATIO±N AND CROSS-OJRRELATION FUNCTIONS

The following formulas apply to jointly stationary time series with
zero mean values.

Autocorrelation of Input

The input time series is denoted by y(t). The corresponding auto-
correlation function is denoted by R (mT) and is given by

yy

N-in

Ryy(MT) I y Y'Ykm M 0,1,2,...M
yy Nm k1k Y~

where

M = "lag number"

M = maximum number of lags

T = sampling period in seconds

Note that this calculation is for positive lag numbers only because Ry
is an even functicmi, i.e.,

Ryy (mT) = R (-mT)

Autocorrelation of Output

The output time series is denoted by x(t) and its corresponding
autocorrelation function by P (mT), which is given by

xx
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N-in

R x(m) - x k x.~ =02. .x N-rnkmi k= 1

where "Mt, and "T" are as previously defined, and 11 is, likewise, an
even function.

Cross-Correlation Functions

Bothi time series x(t) and y(tJ play a role in the calculations of the
cross-correlation functions. The cross-correlation function R XY(inT)
betwveen output x(t) and input y(t) is given by

N-i

R \Y(jinT N in Xk . k+ii i111 0,1,2,. .M

and the cross-correlation function R yx(mT) between input y(t) and
output x(t) by y

N-rn
R y~ml) _N_1 I Yk xk~m m 012..

Thee fnctonsareneiheroddnor even, but satisfy; the relation

R (iiffJ R (-iiff)
xy yx

AIJ[0(ORRI3LAHION AND CROSS- SPECTRAL DLNS ITY FUNC' ONS

'I\o procedures are described, each leading to one-sided estimates of
the same spectral density functions, which are defined for positive fre-
qluencies only. Thle first p)rocedure is called the "direct" method. The
second procea~ire is c-alled the "autocorrelation" method, but it applies to
cross- correlatlon as well. Either or both miethods; m~y be requested.
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Direct Method

The direct method starts with output time sequence x(t) and input time
sequence y(t) and obtains the numerical or finite discrete Fourier
transforms of both sequences; i.e., it calculates X(ja) and Y(jo) for a
specified arbitrary set of frequencies o). These transforms are complex
valfies and may be represented as real RX(j&)), RY(j&o), and imaginaryIX(jwo), IY(jco) parts according to

X(jw) = RX(jo) + jIX(jo)

and

Y(jo)= RY(jai) + jIY(jco)

Estimates of the spectral density functions are then obtained as

indicated:

Sx (jwo) = [RX(jwj)-jIX(jo)] [RX(jQ)+jIX(ja)]

Sxy(jco) = [RX(j)-JIX(j )] [RY(jco)+jIY(j&c)]

Syx( O ) = [RY(j&))-jIY(jc)] [RX(ja)+jIX(jo)]

Syy(jao) = [RY(jco)-jIY(jco)] [RY(jQo)+jIY(jwo)]

By introducing the notion of cospectral density C (jcw) and quadrature-
spectral density Q (Jic), the cross-spectral density terms S (j&J) and
S y (jw) may be exp~ssed as follows:

S (j () =C (jCO) + JQ (jW)
Xy XY XY

and

S(jo) C (jco) + (JQ :
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it may be seen that

C (j w) = RX(j w)*RY(j o)+IX(jco)*IY(j w), xy

C Yx(j o) = RX(jo)*RY(j)+IX(jo6)*IY(jc)

and

Q (joi)= RX(jco)*IY(jo))-RY(jwo)*X(jco)

Teeoe x(j °j) RX(joj)*IY(jo)+RY(jo)*IX(jo))

Therefore

CXY(jc) CYX(jCO)

and

Qxy(oj) =-Qx(jo )

The time sequences x(t) and y(t) are neither even nor odd. Because the
sequences are of finite duration, the end-points introduce integration
errors which may be partially compensated by an end-point correction scheme.
A three-point correction formula known as Simpsons half rule (reference 9)
witi weights 5/12, 8/12, and -1/12 is used in the direct method.

Autocorrr ation Method

This method starts with correlation sequences R , R , R and obtains
the numerical or finite discrete Fourier transforms fr an)arbYV~rary
set of frequencies, on individual or combined correlation sequences,
as follows:
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S (w) Re IR (mt)f

(jO11 R R(mt)f
Yry I4Vi = EL YY J

CX (jWh) =RE I9+ P(mt) 11

Q (icj) + I m P rI~(mt) }] h = ...

where

P(mnt) l/ 12 rR ,(mt) + Ryx(Intl

P q(mt) =1/ 2 [R(mt) RX R(t)

As previously noted

SXy 0y Q X W xy 0j

S x(jW) = CX (j) - j QX 0 W)

Thle autocorrelation sequences R (mT) and R (MT) are both even func-
tions extending to negative values ofxthe argume mT.

The Fourier transformi for either function, say R (mT), may be
expressed asx
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S XX J,) T R OMTcos inij

TR o) + 2'r R (mT)cos xT
R iT= 1 xI

Using a two-point correction for the end-points with equal weights
of 1/2 results in the algoritn as given by equations 11 through 14 of
reference 10. The same corrections are used in this program. The resulting
expressions are

M-1S(Jwl) =T [Rxx ( 0 )+2 T=1 R (mnT)cos in cT]

+ R (IM) cos jIT]
xx

Likewise,

S y(Jh = T [R()+2 mT-1 R y(mT)cos nlhT
mThl

+ R (W) cos NIT]

Since P (nfl') is an even function, its Fourier transform may be obtainedc
in the same manner as for R and R ypreviously noted, i.e.,XX yy

C yjl) T [P (0)+2 NI1P (roT)cos muTmT=l

+ P (ff) cos TI'A
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Since Pq (mT) is an odd function, its Fourier transform may be expressed
asq

Q [ M- 1 P(mT)sin nTQxy(i') [u qo+2h
10 mT= 1

+ P (M)sin %Tl

Variability of Spectral Density Estimates

This discussion applies to the autocorrelation method only.

Variability of the spectral density calculations is said to be chi-
squared distributed with degrees of freedom 2N/M when S and S are
suitably normalized. This drops to N/M at frequencies W = 0 an Y'o = 'T/T.
The parameters N, M, and T are, respectively, the number of time data
points, the number of lags used to calculate the autocorrelation sequence,
and the sampling period in seconds. The required conditions for a chi-
squared variate are that x(t) and y(t) be Gaussian and their ideal spectral
density functions S and S be reasonably constant in the intervalxx yy

Wh - 2- " 7r ., - h t +  2 7r

h mT h mT

These considerations rest with the user to interpret for his own use.
Refer to Part 1, section 14, of reference 11 for more detail.

This program was designed so that the ratio of N/M would not be less
than 2 whenever the autocorrelation method is specified. This is the
recommended minimum for that ratio and is equivalent to two degrees of
freedom in the chi-square sense. The program calculates the value of M
from the punched card entry for DF, the frequency increment, according to

M TTD-- M < SOO
MT*DF <0
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Since the program requires

1 M-

then, substituting from M T*D and rearranging gives the required range for

DF, i.e.,

DF > 2-7r-N 1 10,000

If DF<2v/N*T the program will increase its punched card value 25 percent,
i.e.,I

DF DF
4

Then, if

DF'

the program will substitute the direct method for the autocorrelation method
and continue.

Very often, a choice in sampling rate f for the time sequences x(t)
and y(t) may be exercised before the data are digitized. For data sampled
several factors above the bandwidh of the system producing the data, the
program offers a simple reduction feature. However, one must be careful
not to alias the data by sample reduction. ikliasing is said to occur when-
ever the sampling frequency is less than twice the highest frequency of
interest. For example, consider a low bandwidth s ;tem bandlimited at
10 radians per second. The slowest sampling rate that avoids aliasing is

10
f 3 samples per second
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SNMOTIhING TO IMPROVE SPECTRAL ESTIRtTES

in estimating spectral densities, an ideal representation for the time
function x(t) is a record of infinite length. In practical situations,
only short intervals of time are available for analysis. Also, e may
require shorter intervals of time for other considerations than are
actually available. A mathematical means which literally accounts for
"turning the time function on and off" is to use a spectral filter or
window. A so-called hanning window is used in this program (reference 11).
This filter smooths the spectral density estimates across three spectral
points.

COHERENCE ESTIMATES

Coherence is a measure of the degree to which two time series x(t) and
y(t) are related by a linear model of the type shown here.

(Time- Invariant) N (t)

Linear
Y (t) Model X (t) x(t)

where N(t) is extraneous noise. The tio time series x(t) and y(t) are
supposed to be jointly "weakly" station-, (i.e., the values of their first
and second moments are independent of ti,, choice of the time origin). The
noise disturbance, N(t), must be uncorrelated ith the input. For classical
correlation analysis, the linear model, GA(jcd) may be viewed on a con-
ceptual basis only. In any event, cross-spectral analysis seeks to
determine the degree to which a linear relationship prevails between two
time series and to characterize the linear model (or filter) which may be
thought of as providing this relationship. Then, in terrs of the spectral
density functions, the coherence functions, denoted by R ((J), is given by

x2 C (jw) + (j)
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As long as the linear model holds, the coherence function can also be
expressed as

Snn(j)

xx

where S (jw) is the spectral density function of the output disturbance,
N(t). Ne "total" spectral density of the output can be written in terms of
S (jQ and Sxx,(jw) as

nnx* n
S"xx (J) - Sxx(jwJ + nn JW

where

S W)= the spectral density of x*(t)

Thus, it is apparent that coherence always assumes values between
zero and one. In the absence of an output disturbance (i.e., if
S (jci) = 0 at some frequency w ) then R (w,,) = 1, and x(t) and y(t) are"eifectly coherent" (at that irquency. The opposite condition is whereRK (4k) = 0, then x(t) and y(t) are "perfectly incoherent.")

It should be noted there is no theoretical significance to the
preceding calculations of coherence when the direct method is specified,
since the equation results in values of unity for all frequencies.

GAIN AND PHASE ESTIMATEES

Gain and phase estimates are obtained from the l. ntar model as the
ratio of X(jcj)/Y(jw), i.e.,

GA(jco) X(jc)/Y(jw)
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irI
where G,(jw) may be regarded as the frequency response function relating the

input y~)to thie output x(t). It may also be regarded as the transfer
function. If we multiply both numerator and denominator by the conjugate
of Y(jtj, denoted by YT(jw), then

G Y(Jw)* X(j-W

A Y

but

Y(jw) *X(j&iJ C (jQ~ jOyx(jc)

and

Y(jw) *Y(jw) =S y(j W)

so

G ~C (j (i)+jiQ (j ()

x 2 2
GAi) (jwYX() +W

G A(jw) Y Sy UicW)

C C and~ -Q
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Then

GA( j w) S (jw)

The phase of the transfer function is computed as

=jw tan

.

I
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APPENDIX II

DATA AJNALYSIS RESULTS FOR TERRAIN-FOLLOWING SIMUIATION RUNS

The extensiveness of the data presented in this appendix is to provide

a complete data base for the simulation tests.

A listing of the terrain-following (TF) runs and the significant data
analysis results are given in table IV. Figures 49 through 58 present the
data output plots obtained from the computer data processing of die listed
runs. Each figure shows the pitch stick and horizontal bar (ADI flight
director horizontal needle) time histories; the autocorrelation functions;
the spectral density functions; the cospectra, quadrature spectra, and
coherence functions; and finally the bode plots witi, the computed curve fit
transfer functions. In many instances, it can be seen that a better
amplitude ratio fit can be obtained if the curve fit is lowered in the
amplitude plots without any phasing changes. This corresponds to just
lowering the dc level of the transfer function. The values listed in
table IV reflect these changes.

Figure 59 presents data generated using the pilot model as a means of 1
closing the g control loop for the TF task. The specific model used is
that listed under run No. 0418 in table IV. Computer runs were with this
pilot model and also with an automatic TF system. The graphs indicate the
pilot model performed quite satisfactorily.
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I]
TABLE IV. TERRAIN-FOLLOVWING SIMULATION DATA ANALYSIS

Std Deviation

N N PS OHB
P P Pitch Horiz

Run Stick Gust Stick Bar Pilot Pilot
Figure No. Pilot Effects Effects (in.) (g) Mbdel Rating

-4.2(0.40s- 1)
49 1015 A None None 0.361 0.134 31s 2

.080.386 0.198 -2.5(0.28s - 1) 2so 01PAR$038 .9 1.5s + I

51 0417 A None 0.321 0.149 2RMS 1.4s + 1

52 0418 A None 0.05 g 0.321 0.13C 3.4(0.30s -) 2RMS 1. 2s +1

53 0234 A None .10 g 0.280 0.096 2RWS I 1.4s + 1

54 -10 (0.22s 2)
54 10248 B None None 0.274 0.055 2.6__+ 1 2

0.08 g_-4. _0.3 s _- _

55 0252  B None 0.318 0.087 2(0.34s 1
RMS 1.0s + 1r

56 0254 B 0.16 g None 0,307 0.092 - 7(0.31s 1) 4
FMS 0.90s +!

57 0256 B None 0.05 g 0.297 0.066 -6.0(0.29s -1)
RMS 1.ls + 1

0.I0 g -5.0(0.33s 1 )
58 0258 B None 0. 314 0.079 -PIMS l.9s + 1
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1.0 015 MANUAL TERRAIN FOLLOIING ANALYSIS.
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Figure 49. TF Simulation Run No. 1015 Data
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1015 MAMAL TERRAIN FOLLOWING ANALYSIS.

AUTO CORRELATION FUNCTIONS
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1015 MANUAL TERRAIN FOLLOWING ANALYSIS.
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1015 tIAN1014 IERRAIIJ FOI MwI.'-, ANW4 Y511,i~

SPECTRAL DENSITY FUNCTIONJS
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Figure 49. TF Simulation Run No. 1015 Data (Cont)

102



1015 MANUAL TERRAIN FOLLOWING ANALYSIS.

AUTO-CORRELAT ION METHOD
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Figure 49. TF Simulation Ruan No. 1015 Data (Cont)
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1015 MIANUJAL TERRAIN FOLLOWIG ANALYSIS.
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Figure 49. TF Simulation Run No. 1015 Data (Concl)
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1.0 0416 MAW&AJ. TERRAIN FOLL0WING ANALYSIS.
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Figure 50. TF Simulation Run No. 0416 Data
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041a M1ANUAL TERRAIN FOLLOWING ANALYSIS

AUTO CORRELATION FUNCTIONS
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Figure S0. TF Simulation Run No. 0416 Data (Cont)
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0416 MANUAL TERRAIN FOLLOWING A4ALYSIS.

CROSS CORRELATION FUNCTIONS
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0416 MUM.'JAL TERRAIN FOLLOWING AALYSIS

SPECTRAL OENSITY FUNCTIONS

1.0 AUTO-CORRELATION METHOD
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Figure SO. TF Simulation Run No. 0416 Data (Cr,,t)

108



0416 MAt.NUA,. TERRAIN F0LLkMt* ,.-.YSIS

AlJTO-CORP Et AT ION tVE 11101

iti

.0 11 F T
I. To 0 I I i0-I0
x I.io

FREOUENCY (RAD/SEC 3

I1.01 1~
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Fiue O TF W Simlaio Run No. 04 0.16 Da
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0416 MANUAL TERPAIN FOLLOWING ANALYSIS.

I I
SYI6ODATA

rREW)ENCY (RAD/SEC) 0 BASIC DATA

'4 
_50

1110



P1

•- 1.0 0417 M.ANUAL TERRAIN FOLLOING ANALYSIS.

0.5 VrV L II__-:I~ I Il ;  o0 M ! I! A 1i AI

-0.5

, -1.0

0 20 40 60 80 1fl - 120 140 160

TIME (SECONDS)
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< 0.5:
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0 20 40 60 80 100 120 140 160

TIME (SECONDS)

Figure 51. TF Simulation Ran No. 0417 Data
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0417 MANUAL TERRAIN FOLLOWING ANALYSIS.

AUTO CORRELAT!ON FI*JCTIONS

iii

.05- - - 30

.03 __ _
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0 Io200 300

LAG NUMSER
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{. tI

~~0417 WL',I4,'AL TERRAlIN FOLLOWING tA|,XYSIS.S CR S CO .ELAT ION rUNCTIONS-I
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I
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Figure 51. TF Simulation Run No. 0417 Data (Cont),
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0417 MANUAL TERR FOLLOW1NG AN}_YSIS.

SPECTRAL DENSITY FUNCTIONS

.80 AUTO-CORRELA! 10l METHOD

-40

:: .20 F

! . I O 
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I . I O 
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I .XX IO*0 0 I .X I 
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I. 4.1 I.L{Y _____

FREOUENCY (RADISEC I

Figure 51. TF Sinulation Run No. 0417 Data (Cant)
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0417 IANUAL TERRAIN FOLLOWING ANALYSIS.

AUTO-CORRELATION METHOD

_o _ -._ll i - i z ii:
' : ___ - 1\ iii' i

a.2
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Fiue5.T iuainRnN.01 aa(ot
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0417 MANUAL TERRAIN FOLLOWING ANALYSIS.

10'

, __ __ , _

-, _ _ _ I I- - . -

I~ ._lO
"0  

_ ~ 0  I , _ __ l LEGEN I .X0I0

Z Z

SYID DAl,
FREO,,ENZI (R,-D/SEJ, 0 BASIC DATA

0

' lo ____ __ !
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"0  I I 0  I X 0 I

.X I
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0
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FREQUENCY (RAD/SEC B

Figure 51. TF Simulation Run No .0417 Data (Concl)
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t 1.0 0418 MANUAL TERRAIN rOLLOWING Akf,LYSIS.

- Tjoj K, L il1 ..... I

0-JEFV rTVT: ' .: ' " i , 1'J1T,
-0.5 I T I ,'u

0 20 40 60 80 100 120 140 160
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Figure 52. TF Simulation Rn No. 0418 DataI
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0418 .IUAL TERRAIN FOLL01ING AN'V.YSIS.

AUTO CORRELATIor1 rV UCTICnA3

.15

10- o V''' L_ ' IK Ii Zr 1f

.|-i II !

I II.I
t -t t

• 0 ii '' i i
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' I \1 ' I . .l ! i

Figure 52. TF Simulation Ra No. 0418 Data (Cont)
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0418 fMlAUI.L TERRAIN FOLLOWIN3 XIALYSIS.

CROSS CORRELATION FUNCTIONS

.02 -1 1...L

< .oi -T-
= I~:zz I i1:=--~- ' _ __
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z1z

___ z i-F"- _

0 100 L,00 U300
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Figure 52. TF Simulation Run No. 0418 Data (Cont)

119



Ott18 l1A.ikA TCRRAIN FOLLOWING3 INALYSIS.

SPECTRAL DENSITY Mr.'CTIORS

.80 ALJTO-CORRELAT ION tIEIHO0

Z fn

UU,

I.- O0 I.ituIX0*1IXO0

.080 
FREQUENCY (RA/SEC3

X__ Z'/iP,-

-j

z
0 .020 I - -

o~~~~+ 1 .

FREQUENCY (RAD/SEC) .IIXO

Figure 52. TF Simulation Run No. 041?,' Data (Cont)
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t ~0418 MMAJX. TERRAIN FOLLOAIt$ AN&YSIS.

.16AUTO-CORRELAT ION MZETHOD

.16 11 I vIi -
I I I It

.12 IIII\i

____0 111111 I XI1I* IiX0

FREOI)EtrY (RAOISEC)

n.16 0 V

I tI

r . _______ IX0 I X

FREOUEtJCY (RAD/SEC)

Figur 52 T 1 Simulatio Run No.041 Daa (on
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041S 'UJ.. TERRAIN F0LLOWING ANALYSIS.

15

T-4-
z I

. .X 1 0 "0 I . i 0 
0 0 ! l l 0 L E G E N D I .X 1 0 

0 2

FREQENC (R~n./EC)SYIO DATAi FEQUNC (R /SC)0 BASIC DATA

200

-100
-200 1 1 1 1 11111

-I I I IX1 0 .0

_______ I I

FREQUENCY (RAD/SEC)

Figure 52. TF Simulation Run No. 0418 Data (Concl)
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!.0 0234 MANUAL TERRAIN FOLLOWING ANALYSIS.

0.50
0. A , In

_"-~ I - - - - - - ~L

20 40 60 80 100 120

TIME (SECCNOS)

It

-. 0 AA A ^"

0" 20 40o 60 so too 120

~T1t1E (SECONDS)

Figure 53. TF Simulation Run No. 0234 Data
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0234 tVANU&J TERRAIN FOILLOWUJG /WNYSIS.

AUJTO CORRELATION rUNCTIONS

-. 
-_ - - - -

A--
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02

0 ~1002030
L43 NUMER

.0124



I
0234 iANU)AL TERRAIN FOLL01ING AN,.YSIS

CROSS CORRELATION FUNCTIONS
(.o .010

005 1 L '_7I t
< 

I

. .. .-\ -- ,--4

o .0 _7 F _7

.005j4 jj' h___ sizt___ _ -. I LI
I\-1

-. 010 .. I
0 100 200 300
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• I r- _0 r0 -O 300_lV~lj

Figure 5 .- F Simlaio R o. 0234 Dat _(Cont) j
2.02

T-

t: .01 -

10 20 30 - -- \-

LAG NUJMBER

Figure 53. TF Simulation Run No. 0234 Data (Cont)
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0234 tv.:j&4 TERRAIN -OLL014ING AMLYSIS.

SPECTRX. rt-NstI r'1 1C0N14
AUT 0-CORRELAT ION METHOD

40

FREQUENCY (RAD/SEC)

06

0

FREQUENCY (RAD/SEC)

Figure 53. TF Simulation Run No. 0234 Data (Cant)
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0234 MIANUAL TERRAIN FOLLOWING MMlAYSIS.

AUTO-CORRELATION MVEHOO

____ P~REOUENCY (RADISEC_1L E
.1

cc .10

IL
c

1c.0____

0

LU 10 IX I1 I :IL'0 0

0.4 __

L)

0.2 ____

I .XIO-O .1 I.X17 I.X10 02

FREOUENCY (RAD/SEC)%JC

Figure 53, TF Simulation Run No. 0234 Data (Cont)
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0234 MAUAL TERRAIN FOLLOJING t.Y S-.zSIS.

20

c 10 _

wI

0

wI

10

-. xo,' * I XIo 0'l +02
LEGEND .O

FREQUENCY (RAO/SECI SIC DATA

2001
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-1001

I . X l O 
0  I .X ~ l 0  I . RX I O 

0  .X 1 O 
0 2

FREQUENCY (RAD/SEC)

Figure S3. TF Simulation Run No. 0234 Data (Concl)
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1.O 248 1IAI.AL TERRAIN FOLLOWING ANJALYSIS.

0.-

0 040 60 80 100

THIE (SEC0*MS)

S.30

.20-

0 0 P0

TIM~E CSECC*40S)

Figure 54. TF Siulation Run No. 0248 Data
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0248 IANUAL' TERRAIN FOLLOWIG, ANALYSIS.

,UTO CORRELATION FU,",ICINS

.08

.06F . . . . . , ,:

I. _ F -I-

\l1tI I
.0 O1

0 2

O 100 200 300
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Figure S4. IT Simiulation Run No. 0248 Data (Cont)
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0248 MAJAL TERRAIN FOLLOWING ANALYS*S

CROSS CORRELATION FUNCTIONS

.002 i

---------

- 002- I'll

C.. . . . . . . .1 1,

- 0 a too200 300
LAG M$Jt1ER
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0 100 200 300
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Figure 54. TF Sim~ulation fUn No. 0248 Data (Cont)
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0248 IMIAAL TERRAIN FOLLOWING ANALYSIS.

SPECTRAL DENSITY FUNCTIONS

.60 AUTO-CORRELATION METHOD

S .40

.20
I-

U

0 0

'-- - - - - "__ - --

a

.002 --. i .jii
Il

- 1
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I .XI0 
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I.X10
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FREQUENCY (RAO/SEC)

.0

X.. , _-

FREOUENCY (RAD/SEC)

Figure 54. TF Simulation Run No. 0248 Data (Cont)
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0248 mux~JA TERRAIN FOLLOWING ANALYSIS.

AJTO-CORRELAT ION METHOD

.03 ____

w .02 ____

.0 _ _ -z i
-.01 9~ ~ *~0-l .1 zzz 0

I.XI0-IX0 U i IX00

FREQUENCY (RAO/SEC)

.0300

.02501 ~1~ 1

j) .0200 ____
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Figure 54. TF Simulation Run No. 0248 Data (Cont)
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0248 MAM4AL TERRAIN FOLLOWING ANJALYSIS

30 _______

20,

I.X0XoIO.X LEGEND I.100
FREQUENCY (RAD/SEC) 0SIC DATA
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Figure 54. 17T Simulation Run No. 0248 Data (Conci)
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Z 1.0 025? flMANUAL TERRAIN FOLLOWING ,4ALYSIS.

0 20 40 60 80 100 120 140 160 180

D .40TIME (SEC0OSJ

40-I i
' I I

F r 5. T. 5 Dtaa

a -.2013

-" 020 40 60 80 100 20 140 160 180

TIME (SECONF~)S )

Figure 55. TF Sinulation Run No. 0252 Data
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0252 fUN&IAL TERRAIN FOLLOWING ANA,LYSIS.

AUTO CORRELATIONI FUNCTIOuS

.15
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Figure S5. 'IF Sunaulation Run No. 0252 Data (Gont)j
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025? MANJAL TERRAIN FOLLOWlNG A.NA.LYSIS.

CROSS CORRELATiON rUF7TIOIS
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Figure 55. 'IF Simulation Run No. 0252 Data (Cont)
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0252 lMANUAL TERRAIN FOLLOWING ANALYSIS.

SPECTRAL ENSITY FUNCTIONS

.60 AUTO-CORRELATION FZI"HOD
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Figure 55. TF Simulation _l_ No. 0252 Data (Cont)
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02-52 IALJAL TERRAIN FOLLOWING AN.4LYSIS.

.12 ATO-CORRELAT ION IMETHOO
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.0 24 U1 02

I XI O- I.X0 11111
FREOLENCY (RAD/SEC)
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FREOUENCY (RAOISEC)

Figure 55. TF Siulation Run No. 0252 Data (Cont)
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0252 WIMAL TER~RAIN rOLLOIJING ANALYSIS.

15

10 _

000

g ~-5111.
I .XIO~LEGEND

FREQENCY(RAOSEC)SYID DATA
FREUENY (AD/EC)0 BASIC DATA

0 _ _
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w
T0 N

w -01

-150 
Wv___

-200 -440 0

I.* I ,. I . 10 . I

FREQUENCY (RAD/SEC,

Figure 55. TF Simlation Run No. 0252 Data (Conci)
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IT

1.0 0254 lIAMJA TERRAIN FOLL0 41NG ANALYSIS.

020 40O 60 80 Z00 120 140 150 380

T IREt (SECOtOS)

141
a. .1 0

TIM (SEUM
z -. 201

W -.40
0 0 20 40O so 80 100 120 140 160 180

~TIM'E (SECONOS)

Figure 56. TF Simulation Run No. 0254 Data
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0254 1WA ,W. TERRAIN FOLLOING ANALYSIS.

AUTO C0RR LATION FUNCTIONS

.10
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0 100 20300
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Figure 56. TF Simulation Run No. 0254 Data (Cont)
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0254 t'IAIAL TERRAIN FOLLOWING ANALYSIS.

CROSS CORRELATIOi FLRgTIONS
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x
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Figure 56. TF Simulation Run No. 0254 Data (Cont)
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0254 MANUAL TERRAIN FOLLOWING ANALYSIS.
SPECTRAL DENSITY FUNCTIONS

.60 _____AUTO-C:ORRELATION METHOD

L-) .'40_____

(A

.20__ - -- -----

0~

.02
Ix IO I.XID*O I.XIO I.XIO

FREQUENCY (RAO/SEC)
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.040
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I.XIOW I.X10*0 I.X 1 I.X10+02

FREQUENCY (RAD/SEC)

Figure 56. TF Simulation Run No. 0254 Data (Cont)
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0254 M1AVJN. TERRAIN FOLLOWING tNA. YSIS.

AUTO-CORRELATION tIETHOD

.11____ 11

a.. .04

.0 __ _ i- - -

I.X10 0  I.XI0*OOIXO
0  I.X10 0 2

FREQUENCY (RAD/SEC)
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FREQUENCY (RAD/SEC) ~~C

Figure 56. TF Simulation Run No. 0254 Data (Cont)
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0254 MOM-i~J TERRAIN FOLLOWING ANALYSIS.

15 li

10 _________________

cIoL EGN

5 A 90M
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LI.I - 100

-150

-200 
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Figure 56. TrF Simulation Run No. 0254 Data (Conci)
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-1.0 0256 MANUAL tERRAIN FOLLOWING ANALYSIS.

_ 'I
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Figure 57. TF Simlation Run No. 0256 Data
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0256 HNA J?4 TERRAIN FOLLOWING .AALYSIS.

AJTO CORRELATION FUNCTIONS T N
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Fiue57. TF Simulation Ruxn No. 0256 Data (Cont)
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0256 t. A'JAL TERRAIN FOLLOWING ANALYSIS.

CROSS CORRELATION VUCT IONS
.015" .05--------------------------------------------------- --- --

r• 05 - - - - - - - - - - - ' ,I I I
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.0 - 77 i7I I
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Figure 57. TF Simlation bin No. 0256 Data (Cant)
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0256 .ANJAL TERRAIN FOLLO4ING ANALYSIS.

SPECTRAL DENSITY FUNCTIONS

.60 AUTO-CORRELAT ION V"ETHO0

.4 _ I .1 1 ! ,_ - - -,__ii

__ 1 i. i____....i_ .40

- --x---.-t - .. . .. ...

___IIIi.I

.- 20
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_ .0050
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FREQUENCY (RAO/SEC)

Figure 57. T"F SLmulation Ru~n No. 02S6 Data (Cont)
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t0256 M1ANUAL TERRAIN FLLOIN~G ANALYSIS.

A&TO-COWdiLAT ION fC1OO

w
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.060

t1- .020

.0

.0

LLX1

w
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0 ~FREOXENCY (RADSEC, )JC

Figure 57. TF Simulation Run No. 0256 Data (Cont)
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0256 IMANU&AL TERRAIN FOLLOWJING AnALYSIS.

20

5

- I *XI LEGEND I.XXIO

FREQENCY(RAOSEC)SYID DATA
FRE0ANCY(RADSEC)0 BASIC DATA

-50 ____

Uj -100 _ -

-150

- -- .XO I.XIO+ I.XI0*0

FREQUENCY (RAD/SEC)

Figure 57. TF Simulation Run No. 0256 Data (Conci)]
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1.0 0258 mm'JAL TERRAIN FOLLOWING ANA.YSIS.

0- II I I T

10 20 40 80 10 120 140 16C 180

T (SECONDS)
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I 20 1 L
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TIME (SECONDS)

Figure 58. TF Simulation Run No. 0258 Data
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0258 MNt4. TERRAIN FOLLOWING ANALYSIS. TAPE J. SEG6VNT = 58.

AUTO CORRELATION FUNCTTIOrS

f .10

3 -- \ - - - - - - - --
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-J 111

- . ...L- 20 0

0 1002030
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Figure 58. TF Simulation Run No. 0258 Data (Cont)
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0258 4A1FUAL TERRAIN FOLLOWING ANALYSIS.
CROSS CORRELATION FUNCTIONS

.015
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Figure 58. TF Simulation Run No. 0258 Data (Cont)
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0258 A IJAL TERRAIN FOLLOWING ANALYSIS.

SPECTRAL DENSITY FUNCTIONS

.60 AUTO-CORRELATIO4 tTHO0

C4 II

I -- -

I.I

.0

I.XIO I.x10I.u I.X10 02
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APPENDIX III

DATA -NALYSIS RESULTS FOR AIR REFUELING SIMULATION RLIS

As for the terrain-following (TF) data, the extensiveness of the data
in this appendix is to provide a complete data base for the simulation
tests.

Identification and data results for the air refueling (AR) simulation
runs are listed in table V. Figures 60 through 99 show the data plots
obtained from the computer processing of the simulation data. Each figure
shows the pitch stick and horizontal bar time histories; the autocorrelation
and cross-correlation functions; the spectral density functions; the
cospectra, quadrature spectra, and coherence functions; and, finally, the
bode plots for the pilot trarsfer functions. As indicated earlier, no
automatic curve fitting was achieved and, therefore, none are shown on the
bode plots.
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Figure 60. AR Simulation Run No. 01A12 Data
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OIA12 REFUEL ANALYSIS.
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CIA22 REUE(L ANALYSIS.
SPECTRAL DENSITY FUNCTION4S

.150 AU___MTO-CORRELATIOt4 METHOO
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O!A22 REFUEL ANALYSIS.

AUTO-CORRELAT ION METHOD

_ \ F _

.I o __ I Ii j __ 1 Ii
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Figure 66. AR Simulation kin No. 01A22 Data (Cont)
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OIA22 REFUEL AUNALYSIS.

60 A I

- 20 ___

FRQUNC R/SC 0 BASC__T

-'00
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-100 ____

-200
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Figure 66. AR Simulation Run No. 01A22 Data (Conci)
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.60 01A23 RERI EL M4M.YSIS.
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Figure 67. AR Simulation Ran No. 01A23 Data
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^:A23 REFUEL ANALYSIS.
AUTO CORRELAT ION FtUNCT IO"
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Figure 67. AR Simulation Ran No. 01A23 Data (Cont)
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01A23 REFUEL ANALYSIS.

CROSS CORPZLAT 10N FUNCT 1ONS
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Figure 67. AR Simulation Pon No. 01A23 Data (Cont)
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°01A23 REFUEL ANA.YSIS.

SPECTRAL DENSITY FUNCTIONS

.150 AUTO-CORRELATION METHOD

.1 0 _ i ii '
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Figure 67. AR Simlation Run No. 01A23 Data (Cont)
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01A23 REFUEL ANALYSIS.

C .60 AUJTO-CORRELAT ION METHOD
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Figure 67. AR Simulation Ran No. 01A23 Data (Cont)
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OIA23 REFUEL ANALYSIS.

03

1.X1O-1 .Xao. LEGEND I.XIO*0

FREQUENCY (RAO/SEC) 0 BASIC DATA
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too ___2111

-200 -
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Figure 67. AR Simulation Run No. 01A23 Data (Conci)
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01A2# REFUEL ANALYSIS.
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Figure 68. AR Simulation Run No. 01A24 Data
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OA2' REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 68. AR Simulation Run No. 01A24 Data (Cont)
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01A24 REFLfL k"L.YSIS.

CROSS CORRELATION FUNCTIONS
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Figure 68. AR Simulation Run No. 01A24 Data (Cont)
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OIA24 REFUEL ANALYSIS.
SPECTRAL DENSITY FUNCTIONS

ATO-CORRELATION tIETHOO -
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Figure 68. AR Simulation Run No. 01A24 Data (Cont)
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0IA2'. REFUEL ANALYSIS.

.60 AUTO-CORRELATION METHOD
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Figure 68. AR Simulation Run No. 01A24 Data (Cant)
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01A2% REFUEL ANALYSIS.

-20 ____
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Figure 68. AR Simulation Run No. 01A24 Data (Conci)
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z .80 01A33 REFUEL RAlALYSIS.
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Figure 69. AR Simulation Run No. 01A33 Data
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0IA33 RErUEL AALYSIS.

AJTO CORRELATiON rUNCTIONS
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Figure 69. AR Sinulation Run No. 01A33 Data (Cont)
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01A33 RERfUEL ANALYSIS.

CROSS CORRELATION rUtJCT IONS
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Figure 69. AR Simulation Run No. 01A33 Data (Cont)
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OIA33 REFUEL ANhALYSIS.

SPECTRAL DENS17Y FUNdCTIONS
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Figur 69.__ ARSmuain knNo I33Dt (ot
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01A33 RUEL AN4ALYSIS.

.60AUTO-CORRELATIONt MTCHOD
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Figure 69. AR Simulation Run No. 01A33 Data (Cont)
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OIA33 REFUEL ANALYSIS.
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Figure 69. AR Simulation Run No. 01A33 Data (Conci)
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• 1.0 OIA3,,4 REFUEL ANAL.YSIS.
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TIME (SECONO3S)
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Figure 70. AR Simulation Din No. 01A34 Data
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OIA34 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS

.03
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I -. 01 1 Al
0 to0 200 300

- IN
.0" - \

LAO NUNKR

| 4011.1-------I- i~

C, ,- -,--

o .0

o 0 - --- - I

-. 2 .2:1

LAO tUCNR

Figure 70. AR Simulation Tn No. 01A34 Data (Cont)
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OIA34 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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01A34 REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCTIONSN.150 AUOCREAINW O
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OIA34 REFUEL ANALYSIS.

AUTO-CORRELAT ION METHOD
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OIA34. REFUEL MAL.YSIS.
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Figure 70. AR Simulation Rbm No. 01A34 Data (Conci)
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" .60 0IA35 REFUEL ANALYSIS.
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Figure 71. AR Simulation Run No. 01A35 Data
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0IA35 RCFUEL ANALYSIS.

,,TO CORRELATION FUNCTIONS
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Figure 71. AR Simulation Run No. 01A35 Data (Cont)
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01A35 REFUEL A ALYSIS.

CROSS CORRELATION fUNCTIOtS
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Figure 71. AR Simulation Ran No. 01A35 Data (Cont)
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0IA35 REFUEL MALYSIS.
SPECTRAL DENSITY FUNICT IONS

NJTO-i.ORKLATION METH4OD
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01A35 REFUEL ANJALYSIS.

AUTO-CORFELAT ION METI40
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Figure 71. AR Shnulation Run No. 01A35 Data (Cont)
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01A35 RrFUEL ANALYSIS.
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Figure 71. AR Simulation Run No. 01A35 Data (Conci)
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1.0 0tA38 REFUEL ANALYSIS.
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Figure 72. AR Simulation Run No. 01A38 Data

238



01A38 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 72. AR Simuldation Run No. 01A38 Data CCont)
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01A38 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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01A38 REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCTIONS

•.150 AUTO-CORRELATION METHOD
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Figure 72. AR Simulation Run No. 01A38 Data (Cont)
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OIA38 REFUEL ANALYSIS.

.4 AZJTO-CORRF.LAT ION MIETHOD
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OIA38 REFUEL ANALYSIS.
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Figure 72. AR Simulation Run No. 01A38 Data (Conci)j
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z .60 013qq REFUEL ANALYSIS.
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Figure 73. AR Simulation Run No. 01A39 Data
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01A39 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 73. AR Simulation lbin No. 0JA39 Data (Cont)
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01A39 RErUEL AAL.YSIS.

CR S COR.ELAT IOU FUrVIOt. )
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Figure 73. AR Silidlation Run No. 01A39 Data (Cont)
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OIA39 REFUEL ANALYSIS.

SPECTRAL OENSIYy rUNCTIONS
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Figure 73. AR Simulation Run No. 01A39 Data (Cont)
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01A39 REFUEL ANALYSIS.
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01A39 REFUEL AuMALYSIS.
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Figure 73. Simulation Run No. 01A39 Data (Concl)1
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.80 OIA40 REFUEL ,JAN.YSIS.
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Figure 74. AR Simulation Run No. 01A40 Data
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0IA40 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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OIA40 REFUEL ANALYSIS.

CROSS CORRELATION FUNCT IONS
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Figure 74. AR Sinxulation Ru No. 01A40 Data (Cont)
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DIA40 REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCTIONS
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Figure 74. AR Simulation Run No. 01A40 Data (Cont)
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OIA40 REFUEL ANALYSIS.
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Figure 74. AR Sinulation Run No. 01A40 Data (Cont)
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0IA40 REFUEL ANALYSIS.

-30__ _

-401_____

1.X10 0 1 I.X10+00  I.X10+0' LEGEND .o+0

FREQUENCY (RALD/SEC) 0 BASIC DATA
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Figure 74. AR Simulation Run No. 03A40 (Conci)
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S 1.0 010A3 REFUEL NALYSIS.
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Figure 75. AR Simulation Pun No. 01A3 Data
J
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A3 REFUEL ANLYSIS.

AUTO CORRELATION FUNCTIONS0 F
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Figure 75. AR Simulation Run No. 01A3 Data (Cont)
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OIA3 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIGNS
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Figure 75. AR Simulation Run No. 01A3 Data (Gont)
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01A3 REFUEL AN4ALYSIS.
SPECTRAL DENSITY FUNCTIONS

.50 AUTO-CORRELATION MIETHOD
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CL.10__

-.I I.xioTFEUNC RDSC I.XIO* I.XIO0

1.5

U.'
04, (n~

(s. 1.0____

<0.5
I-
1 1

CD - A --- ~

Simuatio Ru1.. I.xIO*O

Fiue75. AR SiuainRnN.01A3 Data (Cant)
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01A3 REFUEL ANALYSIS.

30 ALJTO-CORRELATiON METHOD
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_____ 0A3 REFUEL ANALYSIS.
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Figure 75. AR Simulation Run No. 01A3 Data (Conci)
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1.0 OIAIO REP'2I'.. ANALYSIS.
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0 20 40 60 so 80o10 120 140O 160
TIMlE (SECONDS)

Figure 76. AR Simulation Run No. O1A1O Data
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OIAIO REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
i .06

liii- -'
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Figure 76. AR Simulation Run No. 01.410 Data (Cont)
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OIAIO REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 76. AR Simulation Run No. OLAO Data (Cont)
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OIAIO REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCTIONS

.150 _____AUTO-CORRELATION M.ETHOD

1~.050 _

~~ ______ I.XIO~~ FREQUENCY tRAD/SEC) IXO - - ~ iO

< .4*0 ___

.0 ---

FREQUENCY (RAD/SEC)

Figure 76. AR Simulation Run No. O1AlO Data (Cont)
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01A10 REFUEL ANALYSIS.

.25 ~ AUTO-CORRELATION METHOD
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OIAIO REFUEL ANALYSIS.

20 _ _
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FREQUENCY tRAD/SEC) 0 BASIC DATA
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Figure 76. AR Simulation Run No. OlA10 Data (Conci)
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04AI REFUEL ANALYSIS.
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Figure 77. AR Simulation Run No. 04A1 Data
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04AI REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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04A! REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 77. AR Simulation Run No. 04AI Data (Cont)
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04AI REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCTIONS

.080 AUTO-CORRELATION METHOD
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04AI REFUEL ANALYSIS.

.16 AJTO-CORRELATION METHOD
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04AI REFUEL ANlALYSIS.
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Figure 77. AR Simulation Runm No. 04A1 Data (Conci)
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02A2 REFUEL A1ALYSIS,
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TIlME (SECONDS)
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Figure 78. AR Simulation Run No. 02A2 Data
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02A2 REFUEL ANALYSIS.
AUTO CORRELATION FUNCTIONS
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Figure 78. AR Simulation Run No. OA2 Data (Cont)
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02A2 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 78. AR Simulation Rtun No. 02A2 Data (Cont)
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02A2 REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCTIO4S

.60 AUTO-CORRELATION METHOD
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Figure 78. AR Simulation Run No. 02A2 Data (Cont)
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02A2 REFUEL ANALYSIS,

AUiTO-CORRELAT ION METHOD
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Figure 78. AP Simulation Run No. 02A2 Data (Cont)
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02A2 REFUEL ANALYSIS.
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A.-'o.-'IA 1141.0 IIIIREFUd+ ANALYSIS.
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Figure 79. AR Simulation Run No. 01A19 Data

280



OIA19 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 79. AR Simulatiop. Run No. 01A19 Data (Cont)
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01A19 REFUEL ANALYSIS.

CROS CORRELATIOn FUNCTIONS
, .04

° II.

c<: .02
If---------------------------------------------------------------- --

-1

0.0

= .0 \

I.-

-.02- I
I- 0 o200 300

LAG NUKIER

.04

X

: .,, .02

F- --- -------------- - - - - - -

.0-
_---I-

0 02
-J I

100 200 300

o LAO NUMBER

Figure 79. AR Simulation Run No. 01A19 Data CCont)
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OIAI9 REFUEL ANAL .YSIS.

SPECTRAL DENSITY Fb.,CTWNSe
.0_0 ..TO-CORRELATION METHOD
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Figure 79. AR Simulation Run No. 01A19 Data CCont)
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OIA19 REFJEL AMALYSIS.

ATO-COiRRELAT ION MTUHOD
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Figure 79. AR Simulation Run No, 0A19 Data CCont)
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OIA19 REFUEL ANLYSIS.
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Figure 79. AR Simulation Riin No. 01A19 Data (Conci)
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35 _ OtA20 REFLEL RMAYSIS.
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Figure 80. AR Simulation Run No. 01A20 Data
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0A20 REFLEL ANLYSIS.
XJTO CORRELATION FUNCTIONS
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Figure 80. AR Simu],ation Run No. 01A20 Data (Cont-)
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0120 REFUEL ANMLYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 80. AR Simulation Run No. 01A20 Data (Cont)
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01A20 REFUEL ANALYSIS.
SPECTRAL DiENSITY FUCTIO1S
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Figure 80. AR Simulation Run No. 01A20 Data (Cont)
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MIAN' REFUEL ANALYSIS.

AUTO-CORRELATION METHOD
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Figuro 80. All Simulation Run No. 0IA20 Data (Cont)
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20 0IA20 REFUEL ANALYSIS.
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Figure 80. AR Simulation Run No. 01A20 Data (Conci)
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• .o OIA31 REFUEL ANALYSIS.
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Figure 81. AR Simulation Run No. 0iA31 Data
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OIA3I REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 81. AR Simulation Run No. A31 Data (Cont) -
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01A31 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 81. AR Simulation Run No. 01A31 Data (Cont)
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'~SPECTRAL DENSITY FUNCTIONS

.040_____ AUTO-CORRELATION METHOD
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Figure 81. AR Simulation Run No. 01A31 Data (Cant)
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01A3 REFUEL ANALYSIS.
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Figure 81. AR Simulation Run No. 01A31 Data (Cont)
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01A31 REFUEL ANALYSiS.
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-- 01A32 REFUEL AN.YSIS.z
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Figure 82. AR Simulation Run No. 01A32 Data
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OIA32 REFUEL ,MN.YSIS.
AUTO CORRELATION FUNCTIONS

.0100

.0090 _ ___--- ~ I Z I

.0060

.00 F .I :Fo \

.0 100 200 30

.30 -

04 .20

0

z -----

0 100 200 300

LAG NUM8ER

Figure 82. AR Simulation Run No. 01A32 Data (Cont)
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01A32 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 82. AR Simulation Run No. 01A32 Data (Cont)
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0IA32 REFUEL ANALYSIS.
SPECTRAL DENSITY FUNCT IONS
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Figure 82. AR Simulation Rtn No. 01A32 Data (Cont)
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0IA32 REFUEL ANALYSIS.

NJTO-CORRELATION METHOD
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Figure 82. AR Simulation Run No. 01A32 Data (Cont)
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OIA32 REVUEIL AALYSIS.
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Figure 82. AR Simulation Run No. 01A32 D ,ta (Conci)
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02A ,49 REFUEL ANALYSIS.
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Figure 83. AR Simulation Run No. 02A49 Data

304



02A49 REFUIL ANALYSIS.
AUTO CORRELATION FWJCTIOuS
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Figure 83. AR Simulation Run No. 02A49 Data (Cont)
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02A49 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 83. AR Simulation Run No. 02A49 Data (Cont)
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02A49 REFUEL ANALYSIS.

SPECTRAL OENS!TY FUNCTIONS
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Figure 83. AR Simulation Run No. 02A49 Data (Cont)
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02A49 REFUEL ANALYSIS.
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Figure 83. AR Simulation Run No. 02A49 Data (Cont)
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02A49 REFUEL ANALYSIS.
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Figure 83. AR Simulation Run No. 02A49 Data (Conci)
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1.0 OIA50 REFUEL ANALYSIS.
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Figure 84. AR Simulation Run No. OASO Data
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GIASO REFUEL AIALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 84. AR Simulation Run No. 01ASO Data (Cont)
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OIA50 REFUEL AINLYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 84. AR Simulation Run No. 01AS0 Data (Cont)
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01A50 REFUEL ANALYSIS.

SPECTPAL DER31TY FUNCTIONS
AJTO-CORRELAT ION 1TUHOO[ ~ ~.20 ___

.10__ ------ 

---.

_ _ _ *

FREQUENCY (RAOISEC)

2- x --
Z F

L) - -

Lii
C14 Ln-

0~..

Ij Q 

-

< _

cc -___

z ----

0!

0 . I ___I__1 
1I. 10 0

I.XI& ~ ~ FREUENCY (RAD/SCI -

Figure 84. AR Simulation Ran No. 01A50 Data (Cont)
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OIA50 REFUEL ANALYSIS.
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Figure 84. AR Simulation Run No. O1ASO Data (Cont)
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0IA50 -REFUEL ANALYSIS.
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Figure 84. AR Simulation Run No. 01A50 Data (Conci)
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01A5: REUE[L ANALYSIS. - - - - -
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01A51 REFUEL AJALYSIS.
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Figure 85. AR Simulation Run No. 01AS1 Data (Cont)
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OA5i RErUCL N.AYSIS.

CROSS CORRELATIONs FuTiOm
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Figure 85. AR Simaulation Run No. OlA5i Data (Cant)
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SPECIRAL DENSI7Y FVOSAS ~VE NLSS
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Figure 8S. AR Simulation Run No. 01A51 Data (Cco1 .t)
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OIA51 REFUEL ANALYSIS
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Figure 85. AR Simulation Ruin No. 01A51 Data (Cont).
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0IA51 RET-UEL AlIALYSIS.
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Figure 85. AR Simulation Run No. OLA51 D~ata (Conci)
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:Z 1.0 01A52 REFUEL ANALYSIS.
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Figure 86. AR Simulation RunNo. 01A52 Data
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0IA52 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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0IA52 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 86. AR Simulation Run No. 0OlAS2 Data (Clont)
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OIA52 REFUEL ANALYSIS.
SPECTRAL DENSITY FUNCTIONS
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Figure 86. AR Simulation Run No. 01A52 Data (Cont)
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01O52 REFUEL AMALYSIS.
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Figure 86. AR Simulation Run No. 01A52 Data (Cont)
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OIA52 REUEL ANALYSIS.
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Figure 86. AR Simulation Run No. 01A52 Data (Conci)
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"; 1.0 OIA56 RErUEL ANALYSIS.

0.5 -

- 1 I I

0.5

- AL

-frO.- 
,.

I---I, o- I

0 20 40 60 so 100 120 14O 160

TIME (SECONDS)

S -2

0,',,I JA I< 0 0 0 A 01

1-i-

f :--L328

A..I



01A56 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 87. AR Simulation Run No. 01A56 Data (Cant)
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01A56 R U L ANLYSIS.
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Figure 87. AR Sinulation Run No. 01A56 Data (Cont)
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01A56 REFUEL MAAYSIS.
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Figure 87. AR Simulation Rain No. 01A56 Data (Cont)
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j 01ASS REFUEL ANALYSIS.
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OIA56 REFUEL MAL&YSIS.
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0A57 REFUEL ANALYSIS.
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Figure 88. AR Simulation Run No. 01A57 Data
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01A57 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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01A57 REFUEL ANALYSIS.

CROSS CORRELAT ION FUNCT IONS
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OIA57 REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCT!ONS
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Figure 88. AR Simulation Run No. M157 Data (Cont)
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01A57 REFUEL ANALYSIS.
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Figure 88. AR Simulation Run No. 01A57 Data (Conci)
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OIA58 REFUEL ANALYSIS.

I. I _ - I 1-1 Al1

- .IsLl
1' o. _ .A

0 20 40 60 0 100 120 140 W6O

TIME (SECONDS)

V3

-J-
2 "t I I

o 0 20 40 60 80 100 120 140 160

TIME (SECONOS)

I7

Figure 89. AR Simulation Run No. 01A58 Data
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01A58 REFUEL ANALYSIS.
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Figure 89. AR Simulation Run No. 01A58 Data (Cont)
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01A58 RErUc-L ANALYSIS.

CROSS CORRELATION rUNCTIONS
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Figure 89. AR Simulation Run No. 01A58 Data (Cont)

342



0IA58 REFULf, ANALYSIS.

SPECTRAL DENSI7Y FrtJCTIONS
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Figure 89. AR Simulation Run No. 01AS8 Data (Cont)

343

I



OIA58 REFUEL ANALYSIS.
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Figure 89. AR Simulation Run No. 01A58 Data (Cont)
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MtASS REFUEL ANALYSIS.
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.60 OIA63 RErUEL ANA.YSIS.
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Figure 90. AR Simulation Run No. 01A63 Data
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01A63 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 90. AR Simulation Run No. 01A63 Data (Cont)
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OIA63 REFUEL ANALYSIS.

CROSS CORRELATION FUNCT IONS
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Figure 90. AR Simulation Ran No. 01A63 Data (Cont)
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OIA63 REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCTIONS
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OIAS3 REFUEL PJJAL'SIS.
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OIA63 REFUEL ANALYSIS.
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Figure 90. AR Simiulation Ruin No. O1A63 Data (Conci)
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Figure 91. AR Simulation Run No. 01A64 Data
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OIA64- REFUEL ANALYSIS.
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Figure 91. AR Simulation Run No. 01A64 Data (Cont)
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01A64 RErUEL ANALYSIS-
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OIA6't REFUEL ANALYSIS.
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Figur 91.AR Simiulationl Run No. 01A64 Data (Cont)
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01A614 REFUEL NALYSIS.
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Figure 91. AR Simulation kin No. 03A64 Data (Cont)
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Figure 91. AR Simulation Run No. 01A64 Data (Conci)
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Figure 92. AR Simulation Run No. 01A46 Data

358



01A46 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 92. AR Simulation bin No. 01A46 Data (Cont)
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01A46 REFUEL A ALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 92. AR Sinrlation Run No. 01.A46 Data (Cont) .
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0IA46 REFUEL ANALYSIS.

SPECTRAL DENSITY FUNC1IONS AJJTO-CORRELAT ION METHOD
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Figure 92. AR Simulation Run No. O:1A46 Data (Cont)
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01A46 REFUEL ANALYSIS.

.25 AUTO-CORRELATION METHOD

.20__ i:1
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Figure 92. AR Simulation Ru~n No. 01A46 Data (Cont)
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OIA6 REFUEL AN~ALYSS.

20 __J
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-10i I ___+_ ___0 
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EQUENCY (A/E)0 BASIC DATA
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Figure 92. AR Simlation Run No. 01A46 Data
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z t.o __ _ 01A47 REFUEL ANALYSIS.
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Figure 93. AR Simulation Run No. 01A47 Data
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j OIA47 REFUEL ANJALYSIS.
AUTO CORRELATION FUJCTIONS
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Figure 93. AR Simulation Run No. 01A47 Data (Cont)
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01A47 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 93. AR Simulation !tn No. 01A47 Data (ont)
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OIA 7 REFUEL ANALYSIS.
SPECTRAL DENSITY FUNCTIONS

_______ AUTO-CORRELATION METHOD

i.I-I.1" I. I*O

Ii----

I-I

-|.XO I.XIO 1  
- I.l1O+ - - I.l0O02

FREQUENCY (RAO/SEC)

1.5

_ T 7
1. -- In

-__ ..-

0 _+

I .Xlr I .XO l.X .XIO +0
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Figure 93. AR Simlation Run No. 01A47 Data (Cont)
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CIA47 REFUEL AN4ALYSIS.

AUTO-CORRELATION METHOD
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Figure 93. AR Simulation Run No. 01A47 Data (Cont)
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01A47 REFUEL ANALYSIS.

4-

-30 0
I.XIO L.1*I.xO*ILGN 'XIO*0

FRIO PEQUENCY (RAD/SEC) .1 0BICDA
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Figure 93. AR Simulation Run No. 0IA47 Data (Conci)
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II
z 0A48 REFUEL ANALYSIS.0
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Figure 94, AR Simulation Run No. 01A48 Data
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OIA48 REFUEL .NL.YSIS.
AUTO CORRELATION FMCTIONS
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Figure 94. AR Simulation Run No. 01A48 Data (Cont)
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0A48 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Fiur 94. AR Siuato Ru No ,14 Dat .
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Figure 94. AR Simulation Run No. 01A48 Data (Cont)

372



01IA48 REFUEL ANALYSIS.
SPECTRAL DENSITY FUNCTIONS

AUTO-CORRELAT ION M~ETHOD
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Figure 94. AR Simulation Run No. 01A48 Data (Cont)



01A48 REFUEL ANALYSIS.

AUTO-CORRELATION lIETHOO
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OIA4.8 REFUEL AfDYSJS.

20 REQMNCY RAo/sEc) 0 BASIC DATA
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Figure 94. AR Siimulation Run No. OIA48 Data (Concl)
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.80 01A53 REFUEL ANAYSIS.
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Figure 95. AR Simulation Run No. 01A53 Data
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01A53 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 95. AR Simulation Run No. 01A53 Data (Cont)
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01A53 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS
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Figure 95. AR Simulation Run No. 01A53 Data (Cont)
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01A53 REFUEL ANALYSIS.
SPECTRAL. DENSITY FUNCTIONS

.0 _ AUTO-CORRELATION METHOD
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Figure 95. AR Simulation Run No. 01A53 Data (Cont)
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01t63 REFUEL MOMTSIS.

.25 AUTO-CCARELATIO M04ETHOD
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Figure 95. AR Simulat ion Run No. 01A53 Data (Cont)
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OIA53 PEFUEL VMYIVS.
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Figure 95. AR Simulation Run No. 01A53 Data (Conci)
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!.0 OIA54 REFUEL ANALYSIS.
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Figure 96. AR Simulation Run No. 01A54 Data

382

'4[

jt



0IA54 RVFtL ANALYSIS.
AUTO CORRELATION FUICTIONS
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Figure 96. AR Simulation Run No. O1AS4 Data (Cont)
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0WA64 REFLXL MALYSIS.

CROSS CORRELg i0...F 2CT IONS
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Figure 96. AR Simulation Ru~n No. 01A54 Data (Cont)
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0IA5'. REFUEL ANALYSIS.

SPECTRAL DENSITY FUNCTIONS

.30 AUTO-CORRELAT ION METHOD
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CIA54 REFUEL AK&AYSIS.

.4 JTO-COWRLAT ION METHOD
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Figure 96. AR Simlation Run No. O1AS4 Data (Cont)
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OIA54. REFUEL ANYSIS.
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1 .5 0lA5 REFUEL ANAYSIS.
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01A55 REFUEL ANALYSIS.

AUTO CORRELATION FUNCTIONS
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Figure 97. AR Simulation Run No. 01A55 Da:ta (Cont)
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01A55 REFUEL ANALYSIS.

CROSS CORRELATION FUNCTIONS

0

.150

I . .- - - - - - - - - - - - - -. - -

- 00 .05

<i

I- - - i i \ --
-Z - 7-. . .,,,o I . z : :

.0 : 
7  

: : : A i

[ .050 v ..0 i" I I - - - - - - - -

-- # ---. \/---

-.100 . . .~~~It.i - 7_- _ -- s+H
-- 0 100 200 300

0.. LAO NUMBER

D .150

0 5 -0

0- .0-.050

V).<-.o- - - - - - - -/ \ II-. ,

.. )
<- -I- -

o -. 100 100 200 30010-------------------------------300

o LAG NUMBER

Figure 97. AR Sinlation Run No. 01A55 Data (Cont)
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01A55 REFUEL AN LYSIS.

SPECTRAL DENSITY FL CTIONS
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Figure 97. AR Simulation Ruin No. 01ASS Data (Cont)
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CIA55 REFUJEL AUALYSIS.

.60 AUTO-CORRELAT ION METHOD
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Figure 97. AR Simulation Ru~n No. 01ASS Data (Cont)
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0IA55 REFUEL ANALYSIS.
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Figure 97. AR Simulation Run No. 01ASS Data (Conci)



OA.01 REFUEL AN.YSIS.
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Figure 98. AR Simulation Run No. 01A61 Data
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MItS1 IRFUEL M.LYSIS.

AUTO COFRELATION FUNCTIONS
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Figure 98. AR Simulation Run No. 01A61 Data (Cont)
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01AI REFUIEL ANA.YSIS.

CROSS CORRELATION FUNCTIONS
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Figure 98. AR Simulation Run No. 01A61 Data (Cont)
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OIASI REFUEL ANLYSIS.

SPECTRAL ffNS1TY FUNCTIONS
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Figure 98. AR Simulation Run No. 01A61 Data (Cont)
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OIA61 REFUEL ANALYSIS.

.60 AUTO-C0ARRLAT ION METHOD
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Figure 98. AR Simulation Run No. 01A61 Data (Cont)
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A61I REFUEL ANALYSIS.
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Figure 98. AR Simulation Run No. 01A61 Data (Concl)
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. .. 01112 REFUEL AN YSIS.
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Figure 99. AR Sinulation ib No. 01A62 Dataj
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0IA62 REFUEL ANwYSIS.

AUTO CORRELATION FUNCTIONS
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01A62 REFUEL ANA&,YSIS.

CROSS CORRELATION FUNCTIONS
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01IA62 REFUEL A ALYSIS.

SPECTRA. DENSITY FUNCTIONS
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Figure 99. AR Sinulation Ru No. 01A62 Data (Cont)
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OIA62 REFUEL ANALYSIS.
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Figure 99. AR Simulat ion Run No. OIA62 Data (Cont)
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0IA62 REFUEL ANALYSIS.
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